

FACULTEIT GENEESKUNDE EN GEZONDHEIDSWETENSCHAPPEN

Disorders of structural proteins

Postgraduate course Human Genetics 08/12/2023

Prof. Dr. Sofie Symoens Center for Medical Genetics Ghent Ghent University Hospital

ORGANELLES

Oxidative phosphorylation • ND1 protein of electron transport chain - Leber hereditary optic neuropathy

- Translation of mitochondrial proteins
- tRNA^{leu}
- MELAS

Mitochondria -

- 12S RNA
 - sensorineural deafness

Peroxisomes -

- Peroxisome biogenesis
- 8 proteins
- Zellweger syndrome

Lysosomes ----

Lysosomal enzymes

- Hexosaminidase A
- Tay-Sachs disease
- α-L-iduronidase deficiency
- Hurler syndrome

EXTRACELLULAR PROTEINS

Transport

- β-globin
- sickle cell disease
- β-thalassemia

Morphogens

- Sonic hedgehog
- holoprosencephaly
- Protease inhibition
- α₁-Antitrypsin
 emphysema, liver disease
- Hemostasis
- Factor VIII
- hemophilia A

Hormones

- Insulin
- rare forms of type 2 diabetes mellitus

Extracellular matrix

- Collagen type 1
- osteogenesis imperfecta

Inflammation, infection response

- Complement factor H
 - age-related macular degeneration

- NUCLEUS

- Developmental transcription factors
- Pax6

-aniridia

- Genome integrity
 BRCA1, BRCA2
 - breast cancer
- DNA mismatch repair proteins
- hereditary nonpolyposis colon cancer

RNA translation regulation

- FMRP (RNA binding to suppress translation)
 - Fragile X syndrome

Chromatin-associated proteins

- MeCP2 (transcriptional repression)
 Rett syndrome
- Tumor suppressors
- Rb protein
 - retinoblastoma

Oncogenes

• •

0

CYTOPLASM

- severe combined immunodeficiency

- Duchenne muscular dystrophy

Phenylalanine hydroxylase

Adenosine deaminase

Metabolic enzymes

- PKU

Cytoskeleton

Dystrophin

0

- BCR-Abl oncogene
 - chronic myelogenous leukemia

- CELL SURFACE

- Hormone receptors
 Androgen receptor
 - androgen insensitivity
- Growth factor receptors
- FGFR3 receptor
- achondroplasia

Metabolic receptors

- LDL receptor
- hypercholesterolemia

Ion transport

• CFTR

- cystic fibrosis

- Antigen presentation
- HLA locus DQβ1
- Type 1 diabetes mellitus

FACULTEIT GENEESKUNDE EN GEZONDHEIDSWETENSCHAPPEN

UNIVERSITEIT GENT Nature Reviews | Genetics

Dystrophin complex: major functions

- maintenance of muscle membrane integrity
- correct positioning of proteins in the complex, so that they function correctly
- ion channels and signaling molecules → participation in cell-cell and/or cell-substrate recognition

Molecular Genetics

Gene: DMD

- the largest known human gene (1,5% of X-chromosome)
- 2.4 Mb of DNA
- comprises 79 exons
- 7 tissue-specific promoters

► differential splicing → tissue-specific, developmentally regulated isoforms (18 different isoforms)

Protein: dystrophin

part of a protein complex that links the cytoskeleton with membrane proteins that in turn bind with proteins in the extracellular matrix

expressed in skeletal and cardiac muscle, brain

Defects of dystrophin

A *spectrum of muscle disease* caused by mutations in the *DMD* gene, which encodes the protein dystrophin.

The mild end of the spectrum

- asymptomatic increase in serum concentration of creatine phosphokinase (CK)
- muscle cramps with myoglobinuria
- isolated quadriceps myopathy

The severe end of the spectrum: progressive muscle diseases

- Duchenne/Becker muscular dystrophy (skeletal muscle)
- *DMD*-associated dilated cardiomyopathy (heart)

Duchenne muscular dystrophy (DMD)

- Normal for the first two years of life
- Symptoms present before age 5 years
- Progressive symmetrical muscular weakness, proximal greater than distal, often with calf hypertrophy
- Wheelchair-dependency before age 13 years
- Unlikely to survive beyond age of 20 years
- Die of respiratory failure or cardiomyopathy
- Modest decrease in IQ (~20 points)
- Prevalence: 1/3,500 males

Becker muscular dystrophy (BMD)

- Progressive symmetrical muscle weakness and atrophy, proximal greater than distal, often with calf hypertrophy (weakness of quadriceps femoris may be the only sign)
- Activity-induced cramping (present in some individuals)
- Flexion contractures of the elbows (if present, late in the course)
- Wheelchair dependency (if present, after age 16 years)
- Preservation of neck flexor muscle strength (differentiates BMD from DMD)
- Prevalence: 1/18,000 males

DMD-associated dilated cardiomyopathy

- Dilated cardiomyopathy (DCM) with congestive heart failure, with males typically presenting between ages 20 and 40 years and females presenting later in life
- Usually no clinical evidence of skeletal muscle disease; may be classified as "subclinical" BMD
- Rapid progression to death in several years in males and slower progression over a decade or more in females

•Incidence DMD:

- 1:3,500 live male births
- Calculated mutation rate 10⁻⁴
- Given a sperm production rate of 8x10⁷ sperm/day: sperm with new mutation is produced every 10 seconds by normale male!

X-linked recessive disorder (Xp21.2)

- 1/3 of cases: new mutations
- 2/3 have carrier mother

Carrier mother:

- majority: no clinical manifestations
- 70 % has slightly elevated serum creatine kinase
- Random inactivation of X-chromosome \rightarrow
 - ~19% of adult female carriers have some muscle weakness
 - 8% has life-threatening cardiomyopathy and severe muscle weakness
- Females with DMD (rare):
 - Nonrandom X-inactivation
 - Turner syndrome (45,X)
 - X; autosome translocation

Molecular Genetics

Mechanisms of Mutation in Duchenne or Becker Muscular Dystrophy

Molecular or Genetic Defect	Frequency	Phenotype
IN AFFECTED MALES		
Gene deletion (1 exon to whole gene)	~60%	DMD or BMD
Point mutations	~34%	DMD or BMD
Partial duplication of the gene	~6%	DMD or BMD
Contiguous gene deletion	Rare	DMD plus other phenotypes, depending on other genes deleted
IN AFFECTED FEMALES		
Nonrandom X inactivation Turner syndrome (45,X) X;autosome translocation	Rare Rare Rare	DMD DMD DMD

DMD

Lethal

gene is not transmitted

1/3 of cases: new mutations2/3 have carrier mother

Non-lethal

BMD

gene is transmitted

high proportion of BMD cases is inherited, only 10% new mutations

Genotype-phenotype correlations

lack of dystrophin expression: DMD

- very large deletions \rightarrow absence of dystrophin expression
- ► mutations that disrupt reading frame (stop mutation, splicing mutation, deletion, duplication) → severely truncated dystrophin that is degraded

remaining dystrophin production (abnormal quality or quantity): BMD

- deletions or duplications that juxtapose in-frame exons
- some splicing mutations
- most non-truncating single-base changes that result in translation of a protein product with intact N and C termini.

Molecular Genetics

Testing

Electromyography: to differentiate between myopathy and neurogenic disorder Serum Creatine Phosphokinase (CK) Concentration

	phenotype	% of affected individuals	Serum CK conc.		
Males	DMD	100%	> 10x normal		
	BMD	100%	> 5x normal		
	DMD-associated DCM	Most individuals	"increased"		
Female carriers	DMD	~50%	2- 10x normal		
	BMD	~30%	2- 10x normal		

Testing

Western Blot and immuno-histochemistry

	Phenotype	Western Blot	Immunohistochemsitry		
		Dystrophin	Dystrophin quantity		
Males	DMD	Non-detectable	0%-5%	(almost) complete	
				absence	
	Intermediate	Normal/Abnormal	5%-20%		
	BMD	Normal Abnormal	20%-50% 20%- 100%	Normal appearing or reduced intensity ± patchy staining	
Female carriers	DMD Random XCI	Normal/Abnormal	> 60%	Mosaic pattern	
	DMD Skewed XCI	Normal/Abnormal	< 30%	Mosaic pattern	
	UNIVERSITEIT FACU GENT GEZOND	LTEIT GENEESKUNDE EN HEIDSWETENSCHAPPEN			

GEZONDHEIDSWETENSCHAPPEN

Western blot and Immuno-histochemistry

–Dystrophin 427 kDa

Normal

Manifesting carrier of DMD

Revertant fibres in a patient with IMD

DMD

Testing

Molecular genetic testing

- Deletion/duplication analysis
 - Multiplex PCR, southern blotting and FISH (deletions)
 - Southern blotting and quantitative PCR (duplications)
 - · MLPA (deletions/duplications), arrayCGH
- Mutation scanning and sequence analysis
 - Small deletions/insertions, single base changes, splice mutations

NGS approaches

- Amplicon-based targeting NGS technique (Multiplicon DMD MASTR™ assay 122 amplicons) or other NGS platform: specific for DMD gene
- Gene panels for neuromuscular disease (varying from 12 to 579 different genes) challenge: update gene panels bioinformatic pipelines

Multiplex PCR - MLPA

Multiplex PCR analysis of dystrophin gene deletions. Exons A, B, C, and D are amplified in a single PCR reaction (arrows indicate PCR primers). The products (shown below each exon) are separated by size on an agarose gel and are visualized.

> UNIVERSITEIT GENT UNIVERSITEIT

Reading frame hypothesis

Correction of *DMD* in Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9

Mutations in collagen structural genes: Osteogenesis imperfecta

- Variable degree of bone fragility
- 4 subtypes (Sillence et al. 1979, 1984)

Type I	Mild
Type II	Lethal
Type III	Severe
Type IV	Moderate

- Defects of type I collagen
- Due to mutations in COL1A1/COL1A2

UNIVERSITEIT GENT UNIVERSITEIT

Mild OI

Severe OI

Lethal OI

Phenotypic spectrum OI

DOI: 10.12998/wjcc.v11.i12.2604 Copyright ©The Author(s) 2023.

PMID: 37214584

Type I (pro)collagen

- Most abundant fibrillar collagen in body
- Widely expressed in bone, tendon, skin, other tissues
- Heterotrimer: $2 \alpha 1 \text{ chains} \rightarrow COL1A1 \text{ (chr 17)}$ $1 \alpha 2 \text{ chain} \rightarrow COL1A2 \text{ (chr 7)}$

Collagen Fibrillogenesis

Collagen fibrillogenesis

UNIVERSITEIT GENT

FACULTEIT GENEESKUNDE EN GEZONDHEIDSWETENSCHAPPEN

Molecular pathogenesis of dominant OI

Osteogenesis Imperfecta type I

- Bone fragility (mild to moderate)
- Varying number of bone fractures
- Blue sclerae
- Hearing loss

FACULTEIT GENEESKUNDE EN GEZONDHEIDSWETENSCHAPPEN

Osteogenesis imperfecta type I (mild)

Osteogenesis imperfecta type II-III-IV

medium collagens

FACULTEIT GENEESKUNDE EN GEZONDHEIDSWETENSCHAPPEN GGA > GAA $\alpha 1(I) - Gly286Glu$

<u>G G C</u> 205 200 195 190 190 <u>6 G C T G C T G G A G A G A A G A A</u> <u>G G A A</u> Gly Pro Ala Gly Glu Glu Gly

$\sim \chi$	<u>~</u>	\sum	\bigwedge	\bigcirc	\bigwedge	\wedge			\bigwedge	$\left(\right)$	\bigwedge	\wedge	$\left(\right)$	\wedge	\bigwedge	\bigwedge	\sim
135			140					145					150				
G G C	СС	т	G	С	Т	G	Α	Α	G	Α	G	G	Α	Α	G	G	Α
Glv	Pr	0	1	cا۵			G		G	:lu		G	:hu		G	:hz	

Dominant OI

Most prevalent form of OI; caused by primary defects in type I collagen

Over 1500 mutations identified in *COL1A1* or *COL1A2* The majority are glycine substitutions in the triple helical domain of either the pro-α1 or pro-α2 chain of type I collagen

Mutations alter the structure or quantity of type I collagen and cause a skeletal phenotype that varies from subclinical to lethal

The phenotype is determined by the type of chain involved, the nature and position of the substituting amino acid

Multiple contributing mechanisms including intracellular stress, disruption of interactions between collagen and noncollagenous proteins, compromised matrix structure, abnormal cell-cell and cell-matrix interactions, tissue mineralization

Genotype-phenotype correlations

• $\alpha 1(I)$ -chain:

- Glycine-substitutions in N-terminal 200 residues are associated with non-lethal phenotype
- C-terminal glycine substitutions are associated with severe to lethal phenotype
- Two exclusive "lethal regions"

• α2(I)-chain

- ▶ 80 % of glycine substitutions is non-lethal
- 8 "lethal regions"

Distribution of mutations along $\alpha 1(I)$ -collagen chain

• Valine: branched non-polar side-chain

•Arg, Asp, Glu Charged AA

Overrepresentation of lethal phenotypes

Distribution of mutations along $\alpha 2(I)$ -collagen chain

Proα1^M stoichiometric effect:

Genetic counseling

Mild OI: ~60% of individuals with mild OI have *de novo* mutations

Severe (type III) and lethal (type II) OI: virtually 100% of individuals with *de novo* mutations.

Name of disorder	MOI	OMIM No.	Gene	Molecular diagnosis OMIM
OI type 1	AD	166200	COL1A1, COL1A2	OI type I
OI type 2	AD	166200	COL1A1, COL1A2	OI type II
	AR	610854	CRTAP	OI type VII
	AR	610915	LEPRE1	OI type VIII
	AR	259440	PPIP	OI type IX
	AR ^a	607723 ^a	SUCO ^a	SUN1 ^a
OI type 3	AD	259240	COL1A1, COL1A2	OI type III
	AR	613982	SERPINF1	OI type VI
	AR	610682	CRTAP	OI type VII
	AR	610915	LEPRE1	OI type VIII
	AR	259440	PPIB	OI type IX
	AR	613848	SERPINH1	OI type X
	AR	610968	FKBP10	OI type XI
	AR	615066	TMEM38B	OI type XIII
	AR	112264	BMP1	OI type XIV
	AR/AD	615220	WNT1	OI type XV
	AR	616229	CREB3L1	OI type XVI
	AR ^a	616507 ^a	SPARC ^a	OI type XVII ^a
	AR ^a	617952 ^a	TENT5A(FAM24A) ^a	OI type XVIII ^a
	AR ^a	607783 ^a	MESD ^a	OI type XX ^a
OI type 4	AD	166220	COL1A1, COL1A2	OI type IV
	AD	615220	WNT1	OI type XV
	AR	610854	CRTAP	OI type VII
	AR	259440	PPIB	OI type IX
	AR	610968	FKBP10	OI type XI
	AR	606633	SP7	OI type XII
OI type 5	AD	610967	IFITM5	OI type V
Osteoporosis X-linked form ^a	XL	300294	PLS3	OI type XIX
	XL		MBTPS2	
Osteporosis AD form ^a	AD	615220	WNT1	OI type XV
	AD		LRP5	

PMID: 32901963

The Ghent experience for OI: 1990-2015

Recessive OI: CRTAP/LEPRE/PPIB complex

Causal genetic defects in P3H1: OI type VIII

Proband 1

Proband 2

Proband 3

Proband 4

Hom. c.1365-1366delAGinsC p.(Glu455fs*)

Hom. c.628C>T p.(Arg210*)

Het. c.1102C>T p.(Arg368*) Het. c.2055+18G>A, Intron 14

Hom. c.2055+18G>A, Intron 14

- Lack of calvarial ossification
- Beaded ribs with multiple fractures
- Platyspondyly
- Shortened, wide, bowed and fractured large tubular bones
- → Based on the phenotype: no distinction between AR OI or Severe/Lethal AD OI ??

UNIVERSITEIT GENT UNIVERSITEIT

Mutations in LEPRE1: OI type VIII

• Childhood to adolescence

- Severe growth deficiency & extreme bone fragility
- · Very short, wide bowed and fractured tubular bones
- Popcorn-like 'epiphyses' and round cyst-like translucencies
- Barrel-shaped chest, short ribs, platyspondyly, thoracic scoliosis
- Tall prominent forehead, narrow head, round face
- · Long, gracile hands with joint hyperlaxity

P3 ,10 yrs

P3, X-rays at 5 yrs and 4 mths

P4, 8 yrs

UNIVERSITEIT

FACULTEIT GENEESKUNDE EN GEZONDHEIDSWETENSCHAPPEN

Mutations in LEPRE1: OI type VIII

• Adolescence/early adulthood (> 15 yrs)

• Extreme short stature, very severe osteoporosis

- Disappearance of the popcorn-like structures
- Additional widening of the rhizomelic diaphyses

• Progressive narrowing and bowing of the mesomelic diaphyses

Reduced knee joint spaces

Long hands & fingers

P3 at age 17 ¹/₂ yrs

Mutations in FKBP10: OI type XI

P4 at age 7 yrs

Hom. p.(Gly278Argfs*95)

Consanguineous parents of Turkish origin Congenital contractures of knees and ankles, wormian bones Since age 2 months recurrent costal and femoral fractures Triangular face, normal dentition & hearing, white sclerae At age 9 yrs greatly restricted limb movement, wheelchair-bound

Mutations in FKBP10: OI type XI

Rib fractures

wormian bones

Tricky case

- Proband : 1st child from healthy consanguineous parents of aboriginal Chilean origin
 - Referred with suspicion of OI type VII:
 - At birth: small stature, rhizomelia, multiple fractures, bowing of limbs,
 - > walked at age 2 yrs, stopped walking at age 6 yrs
 - severe osteoporosis (Z-score -6.65)
 - Brother of P1: similar clinical history

CRTAP excluded in another center

Tricky case

- Exclusion of LEPRE1 and PPIB
- COL1A2: heterozygous c.2565+1G>A
 - Present in 2 affected children
 - Absent in healthy parents

 \rightarrow Parental mosaicism

OI mice

OI zebrafish

