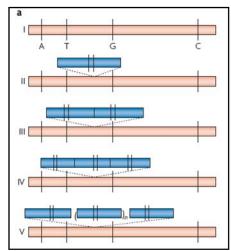

Tools for human molecular diagnostics/Human Genetic diversity

Joris Vermeesch BeSHG 2023

Why are we different?


Causes of genetic variation

Varianst are rare

- 1 SNP every 1000 bp
- 0.1% difference between 2
- human genomes
- 3 Mb difference

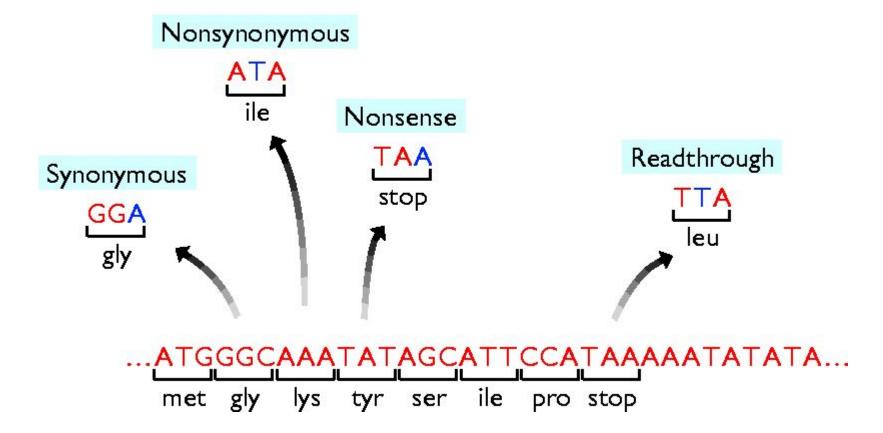
Copy number variations (CNVs) (2004)

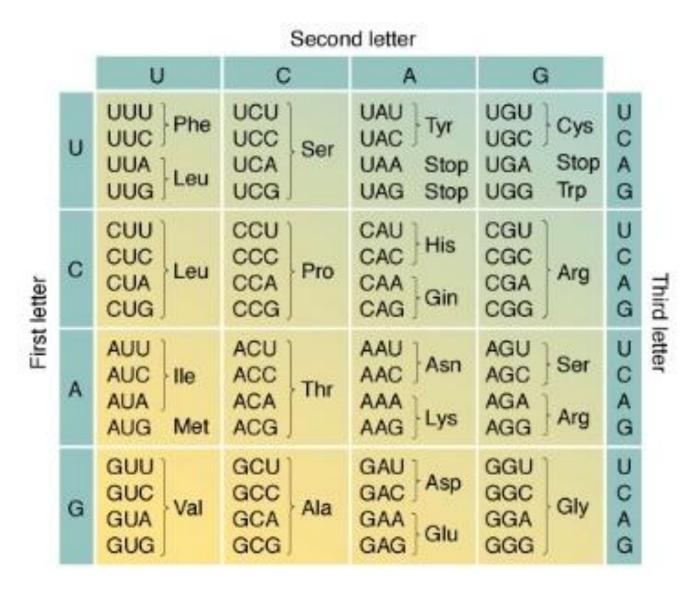
Very frequent:

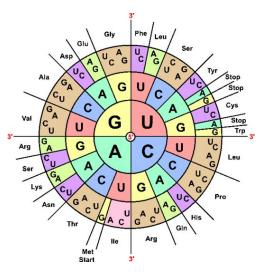
- 1000 CNVs/2 individuals
- 0.7% of genome is copy
- variable between 2 individuals
- 21 Mb difference!

Human Genetic Variation

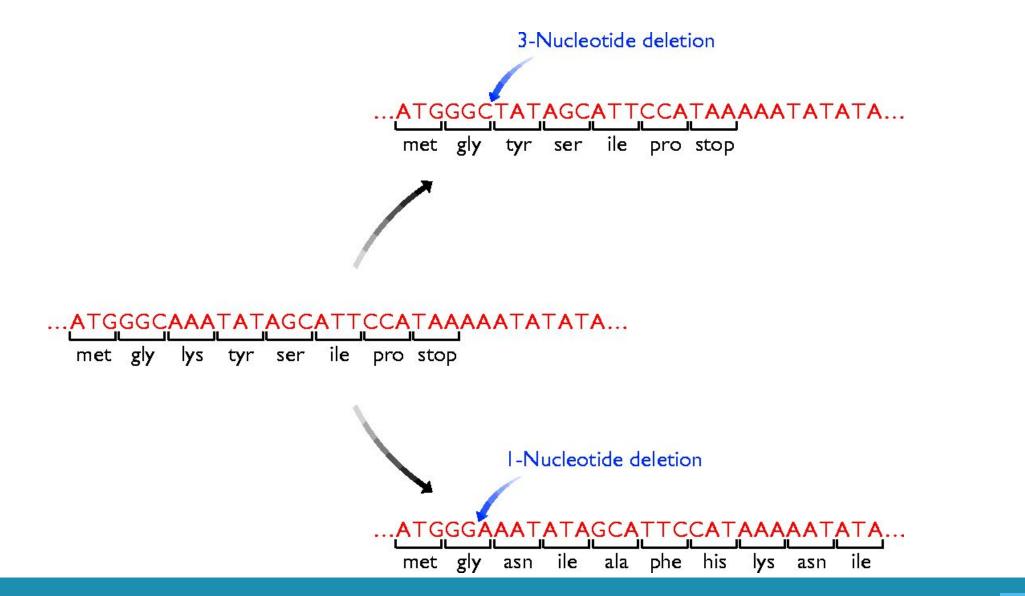
- 1. Nature of variation
- 2. Types of mutations and their consequences
- 3. Variation in individual genomes
- 4. Origin and frequency of different types of mutation
- 5. Consequences for molecular diagnostics of WES/WGS


Types of variation and their consequences


• Chromosomes & Copy number variation => see lesson on chromosomes


SNPs : Common variation in the genome

		•	•	15 I	
Reference se	quence G G A	тттст	AGGTA	ACTCA	GTCGA
SNP	Allele 1 GGA				
	Allele 2 G G A	тттс <mark>с</mark>	AGGTA	АСТСА	GTCGA
Indel A	Allele 1 G G A				
InderA	Allele 2 G G A	ТТТСТ	A G G <mark>G</mark> T	AACTC	AGTCGA
Indel D	Allele 1 G G A				
Indel B	Allele 2 G G A	Т – – С Т	AGGTA	ACTCA	G T C G A


Point mutations (SNV)

Deletions and insertions (indels)

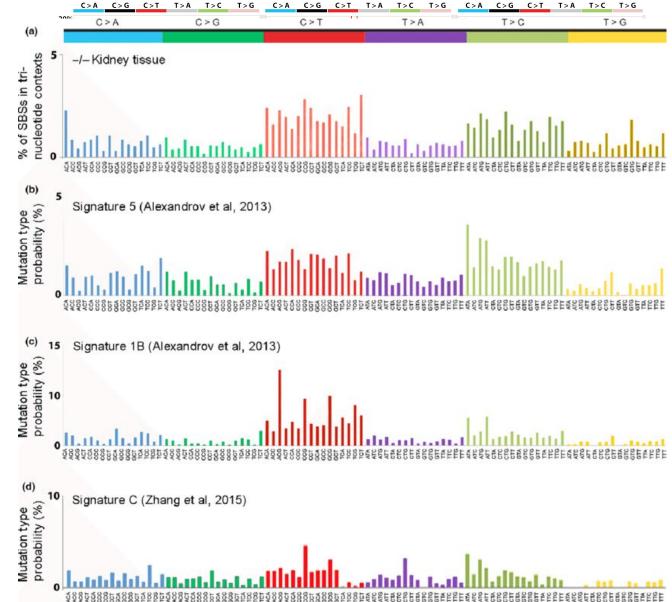
Point mutations origin

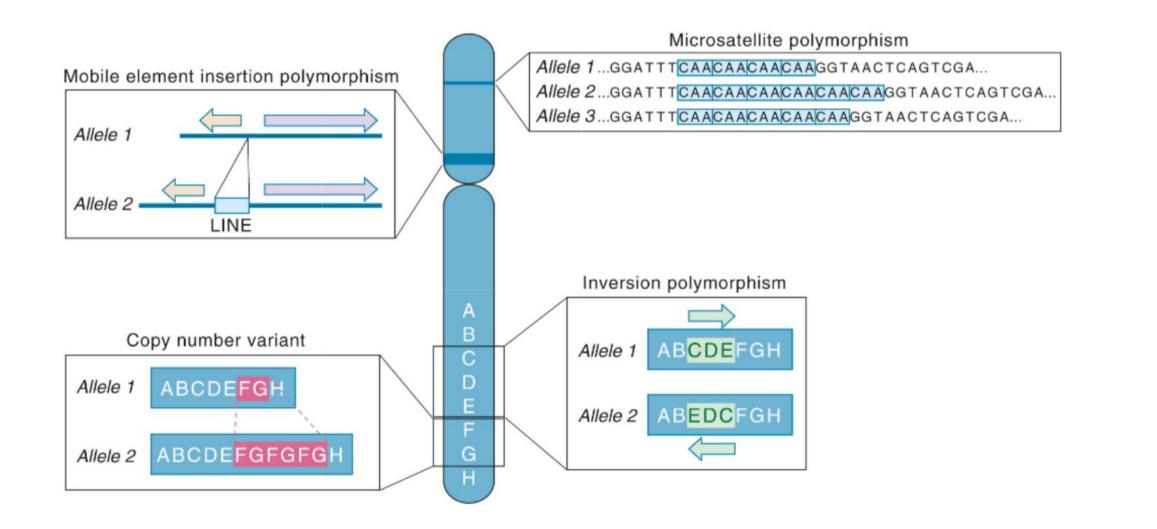
- During replication (1 mutation/cell division)
- DNA damage
 - Estimated to be 10000- 1M nucleotides are damaged/human/day
 - Spontaneous chemical processes: e.g. Depurination, Demethylation, Deamination
 - Chemical mutagens (natural or otherwise)
 - Ionizing and UV radiation
- DNA damage is repaired, but some remain.

Mutational signatures

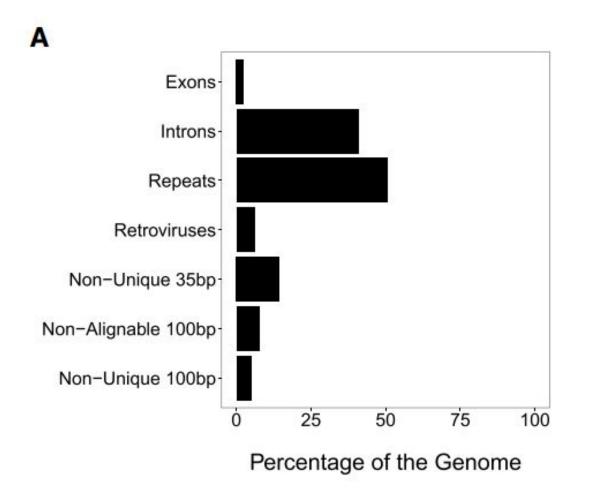
COSMIC v94, released 28-MAY-21

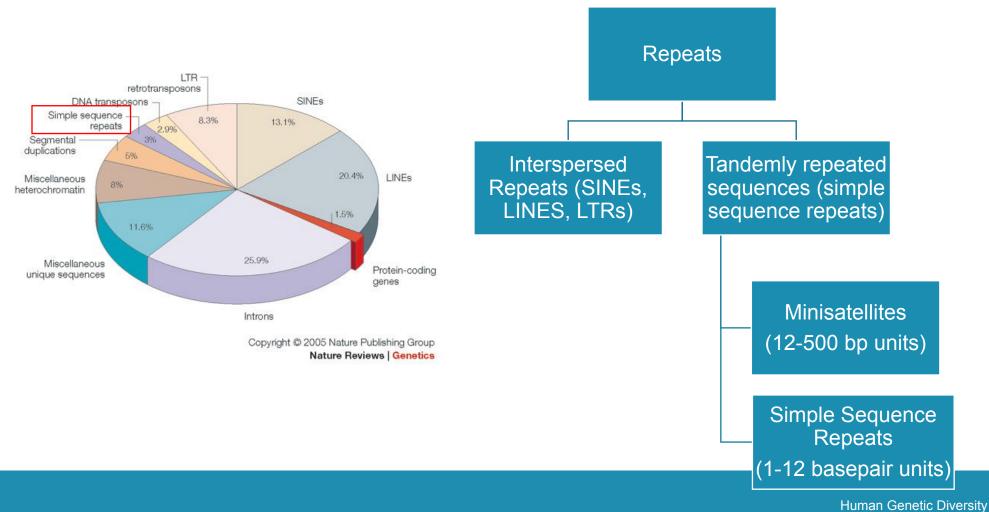
COSMIC, the Catalogue Of Somatic Mutations In Cancer, is the world's largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer.


Start using COSMIC by searching for a gene, cancer type, mutation, etc. below.


eg Braf, COLO-829, Carcinoma, V600E, BRCA-UK, Campbell SEARCH

Projects

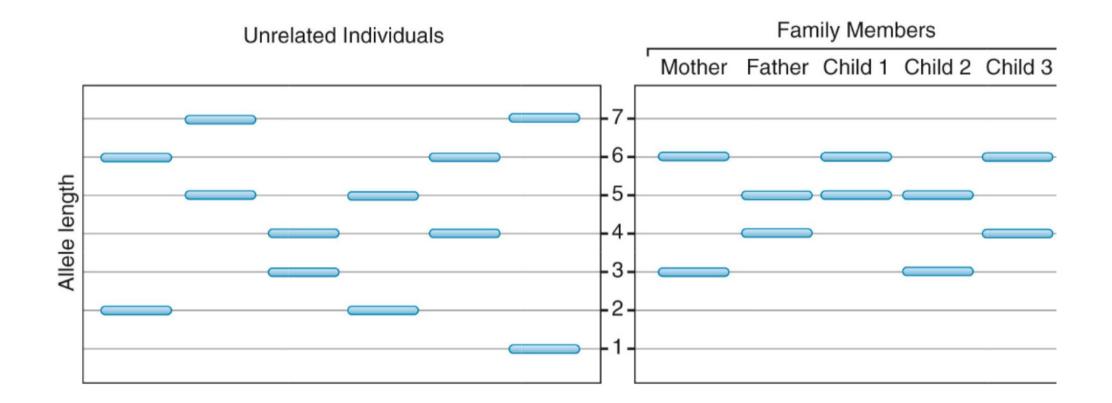

COSMIC is divided into several distinct projects, each presenting a separate dataset or view of our data:

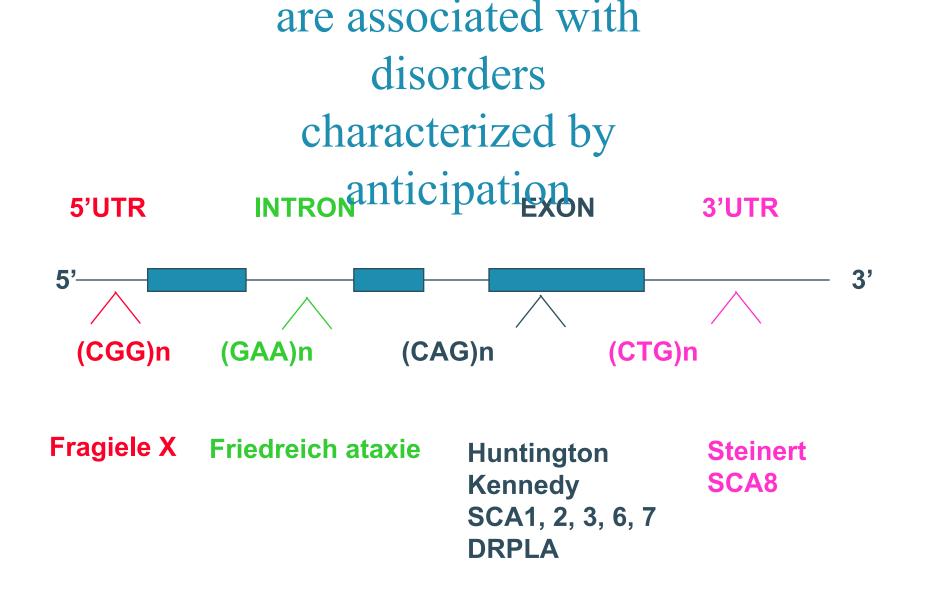


Het humane genome contains 50% repeats

13 Goldfeder et al. (2016). Medical implications of technical accuracy in genome sequencing. Genome Medicine (2016) 8:24 Human Genetic Diversity KU LEUVEN

Het humane genoom bevat 50% repeats

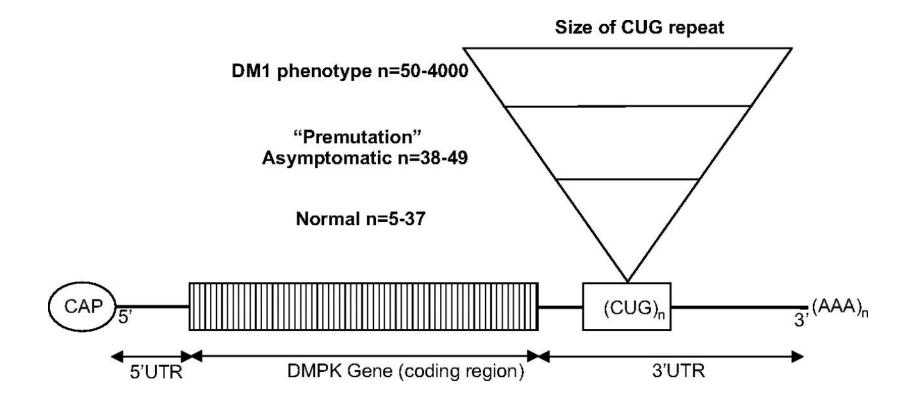



14

Short tandem repeat (STR)

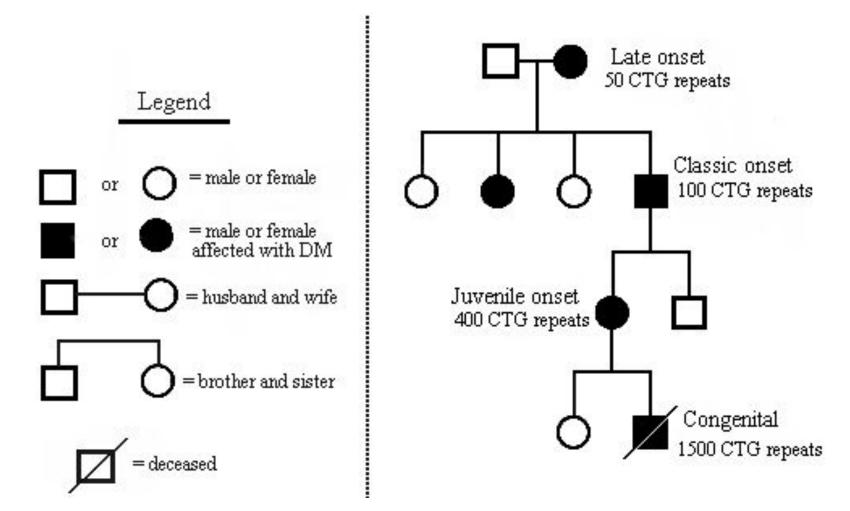
- Short tandem repeat = Microsattelites = Variable number of tandem repeats = simple sequence repeats
- They have specific unit: e.g. CGG
- That is repeated:
 - CGGCGGCGGCGGCGGCGG
- **± 1 miljoen STRs** in the human genome
- Tandem repeats can have a big impact on phenotype

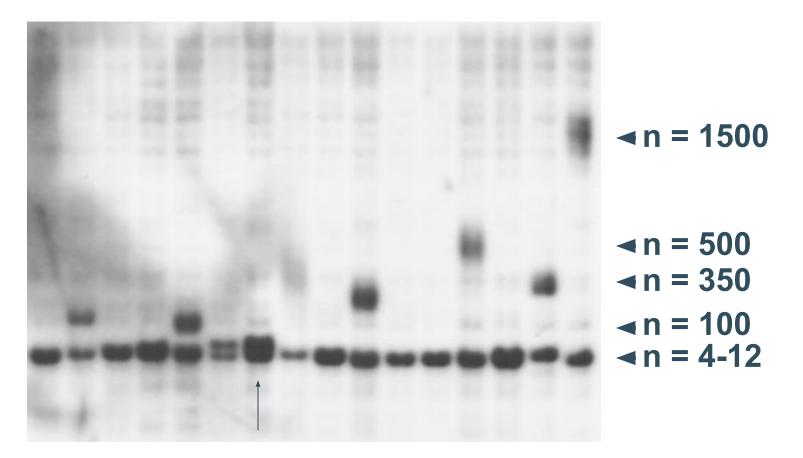
A schematic of a hypothetical microsatellite marker in human DNA.


Myotonic dystrophy (Steinert disease) (as an example)

- Autosomal dominant
- Trinucleotide repeat expansion

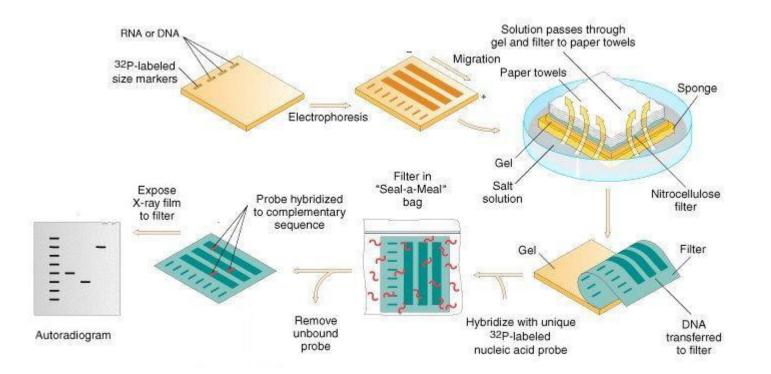
DMPK pre-mRNA with relationship between CUG repeat size and phenotype.



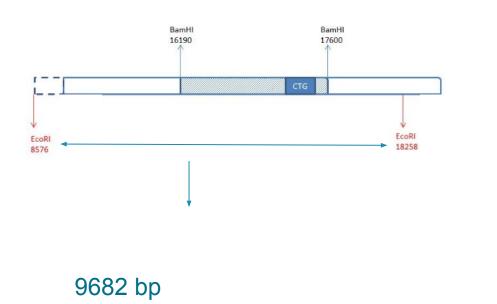

Myotonic dystrophy (Steinert disease) Hereditary aspects

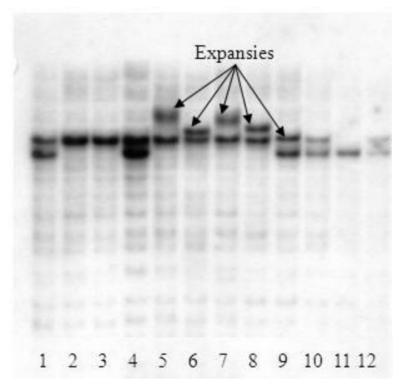
- Anticipation
 - Increasing severity and successive generations
- Maternal transmission for large expansions
- Often paternal transmission in case of smaller expansions.

DM: anticipation

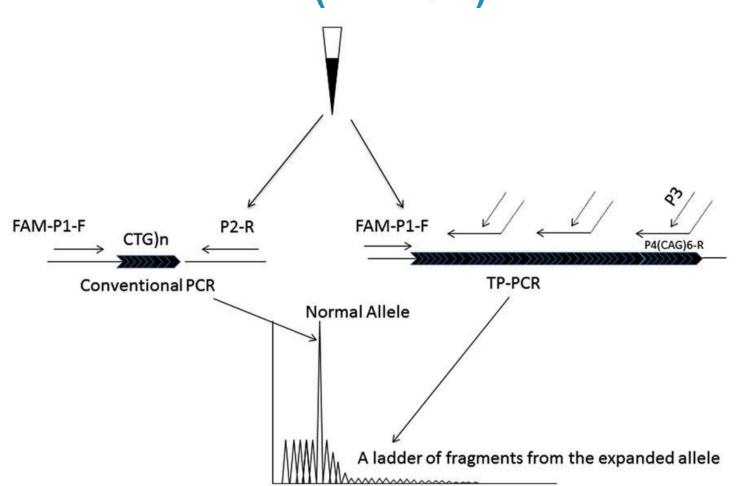


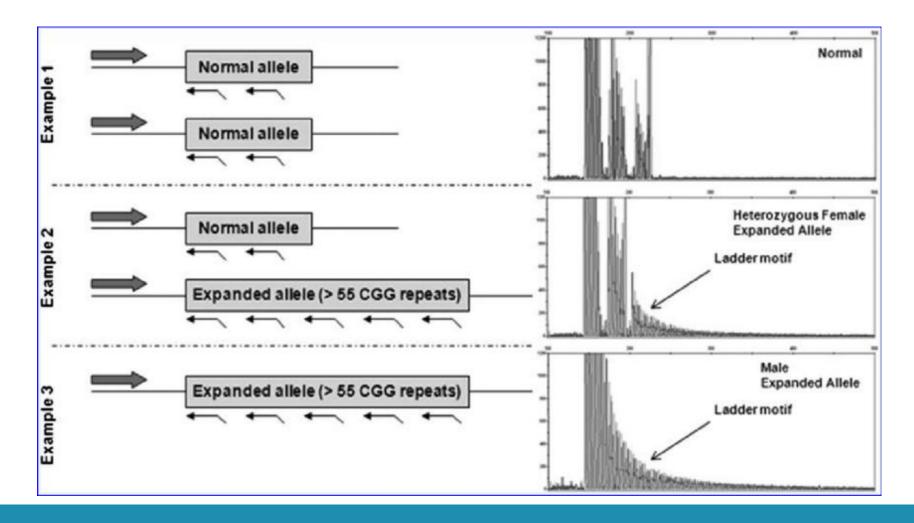
Myotonic dystrophy (Steinert disease): detection



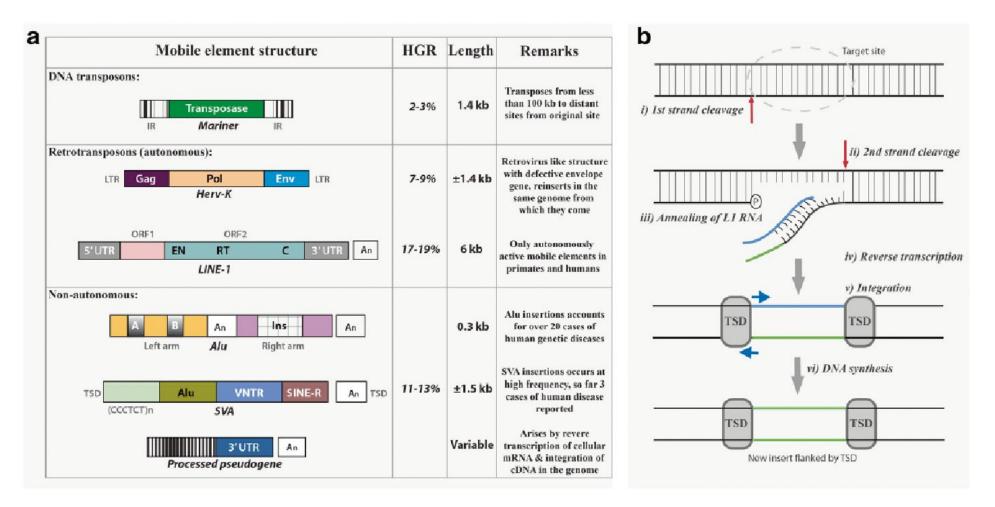

Southern blot om lange expansies te bepalen:

1. Knippen van humaan genoom met restrictie enzymes

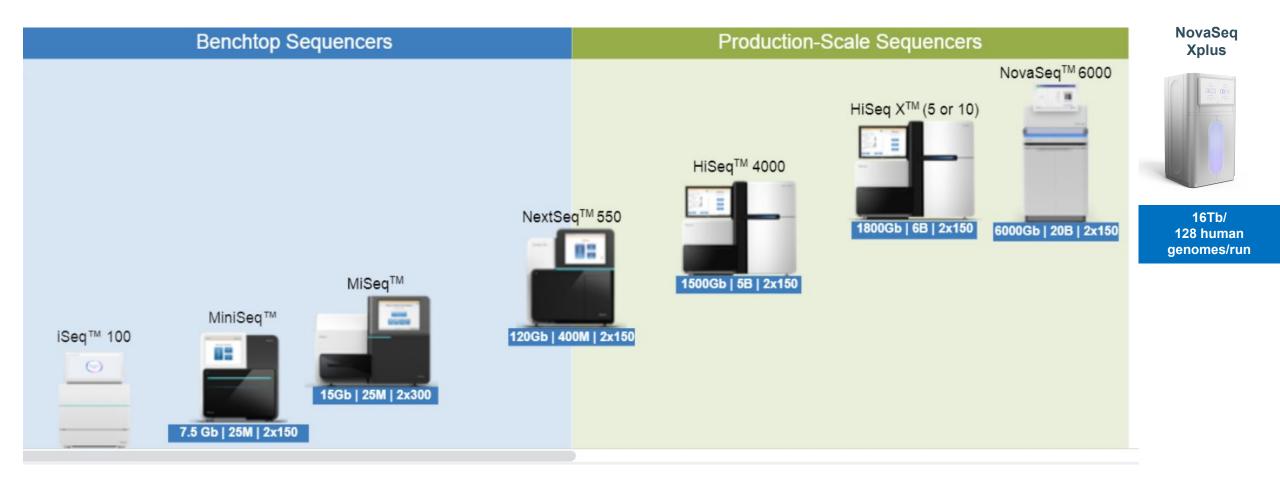

Southern blot to detect large expansions

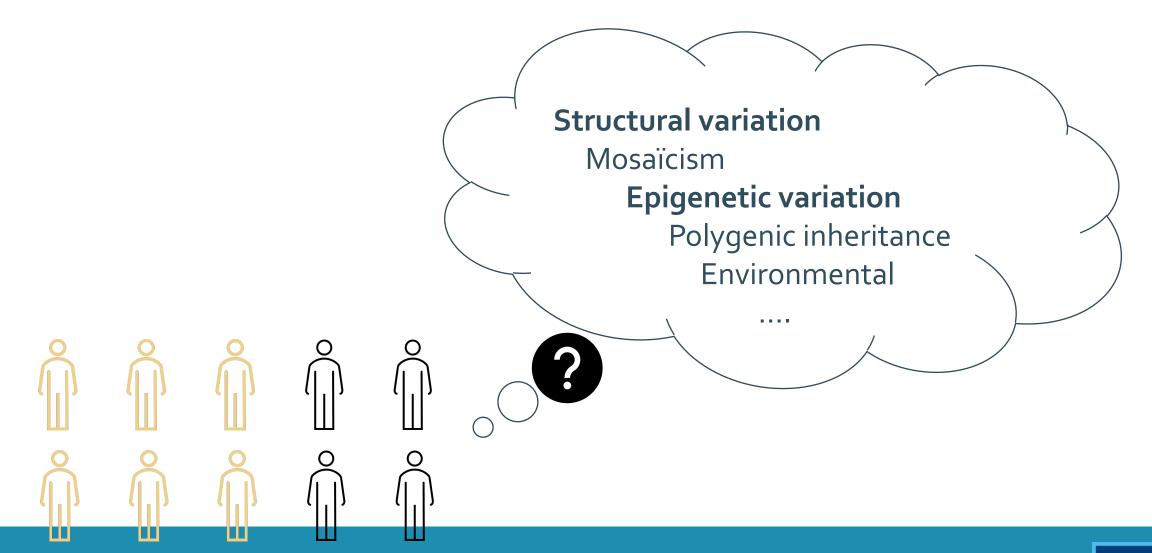


- -> Fragment can be recognized via probe
- -> Fragment will be larger with larger expansions


Long expansions can be detected by Triplet primed-PCR (TP-PCR)

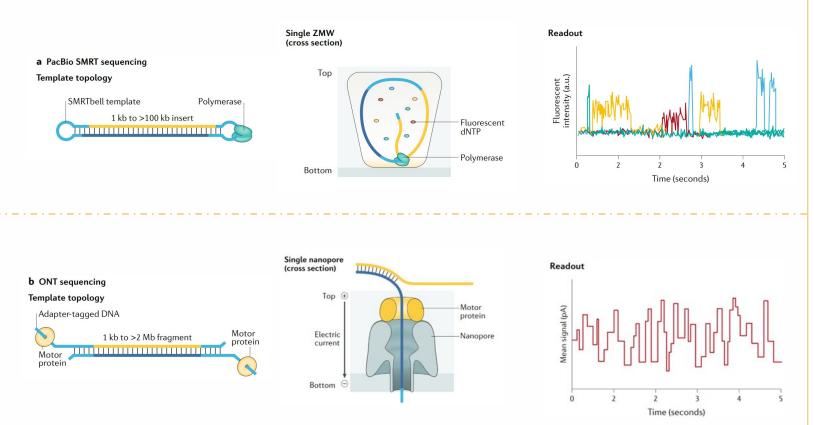
Triplet primed PCR


Active mobile elements in the human genome

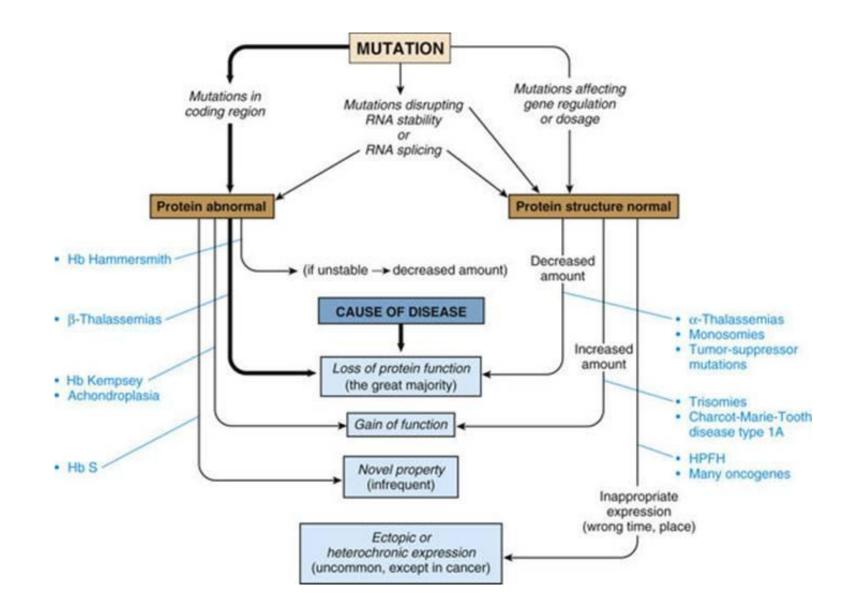

SNPs : Common variation in the genome

Type of Variation	Size Range (approx.)	Basis for the Polymorphism	Number of Alleles		
Single nucleotide polymorphisms	1 bp	Substitution of one or another base pair at a particular location in the genome	Usually 2		
Insertion/deletions (indels)	1 bp to > 100 bp	<i>Simple</i> : Presence or absence of a short segment of DNA 100-1000 bp in length <i>Microsatellites</i> : Generally, a 2-, 3-, or 4-nucleotide unit repeated in tandem 5-25 times	<i>Simple</i> : 2 <i>Microsatellites</i> : typically 5 or more		
Copy number variants	10 kb to > 1 Mb	Typically the presence or absence of 200-bp to 1.5- Mb segments of DNA, although tandem duplication of 2, 3, 4, or more copies can also occur	2 or more		
Inversions	Few bp to > 1 Mb	A DNA segment present in either of two orientations with respect to the surrounding DNA	2		

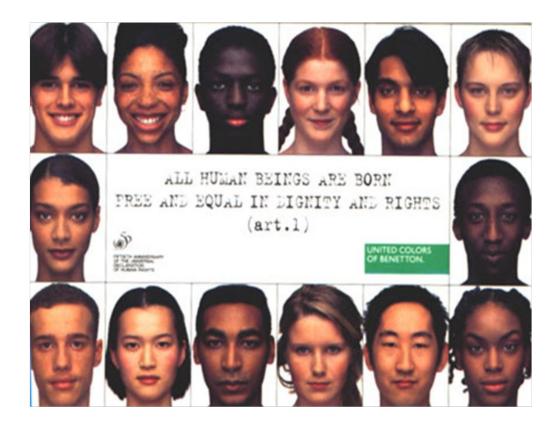
Short read genome sequencing

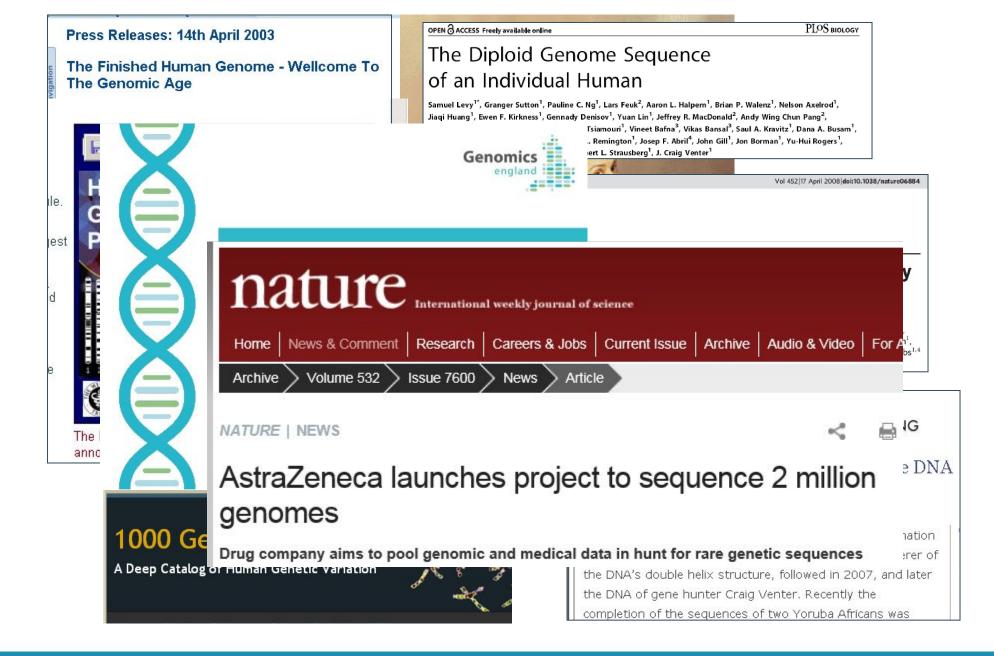


GAP of short read sequencing



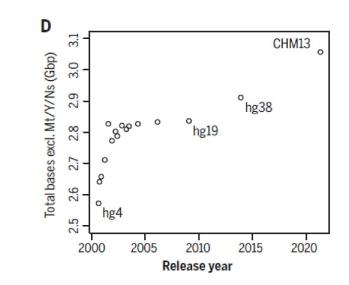
third generation sequencing bridging the gap




Adapted from Logsdon et al., Nature Reviews Genetics, 2020 KU LEUVEN

Variation in individual genomes

	Reference Genome							A	A Person's Genome						
	X	X	X	X	X	X	X	XX	XX	XX	XX	XX	XX	XX	
	X	X	X	X	X	X	X	XX	XX	XX	XX	XX	XX	XX	
	X	Ħ	X	X	X	X	X	XX	XX	XX	XX	XX	XX	XX	
What is it?	X XX + Mitochondrial DNA						XX	Xx	+ M	litocho	ondria	I DNA	4		
How many chromosomes?	24 (22 + X + Y)						46 (23 PAIRS)								
How many letters?	~3.2 bn					~6.4 bn									
How to think about it?	 The Human Genome Project and its goal of a first draft of "the human genome" 							 The genome of a person The genome within a person's cells 							
	 Serves as a standard for comparison A "consensus" genome sequence 					• 1	 The whole genome sequence of an individual 								



The Human Reference genome

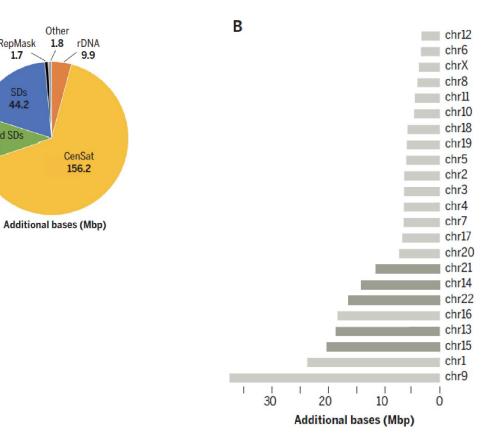
- Genome reference consortium
- Made up of 13 anonymous volunteers. 80% from 8 individuals.
- First version (2001) had 150000 gaps, the latest release, CRCh38 was released December 2013 and contained around 250 gaps.
- Issue: 'The' reference does not exist!

Release name	Date of release	Equivalent UCSC version				
GRCh38	Dec 2013	hg38				
GRCh37	Feb 2009	hg19				
NCBI Build 36.1	Mar 2006	hg18				
NCBI Build 35	May 2004	hg17				
NCBI Build 34	Jul 2003	hg16				

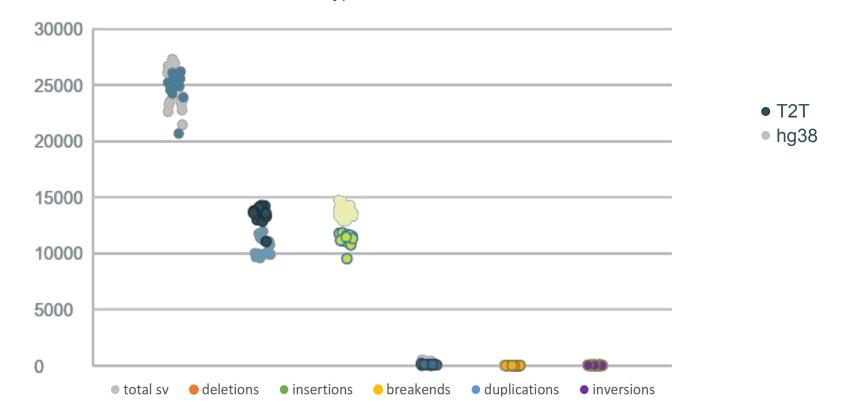
The T2T reference genome: The complete sequence of a human genome (2022)

С

RepMask


1.7

44.2


CenSat and SDs

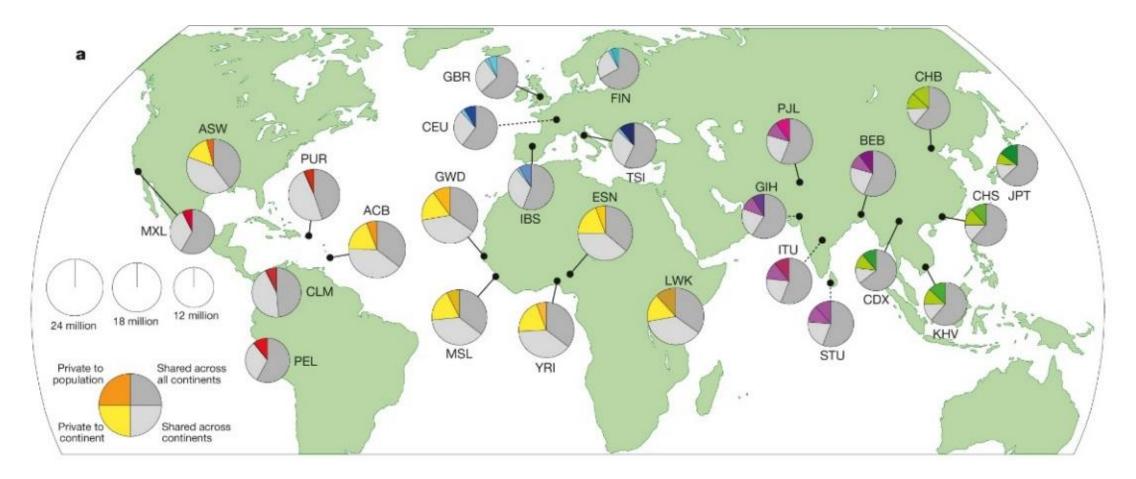
24.2

STATISTICS	GRCH38	T2T-CHM13	DIFFERENCE (±%)
	Summary		
Assembled bases (Gbp)	2.92	3.05	+4.5
Unplaced bases (Mbp)	11.42	0	-100.0
Gap bases (Mbp)	120.31	0	-100.0
Number of contigs	949	24	-97.5
Contig NG50 (Mbp)	56.41	154.26	+173.5
Number of issues	230	46	-80.0
Issues (Mbp)	230.43	8.18	-96.5
	Gene annotation		
Number of genes	60,090	63,494	+5.7
Protein coding	19,890	19,969	+0.4

the new reference genome adds 200 Mb and improves mapping

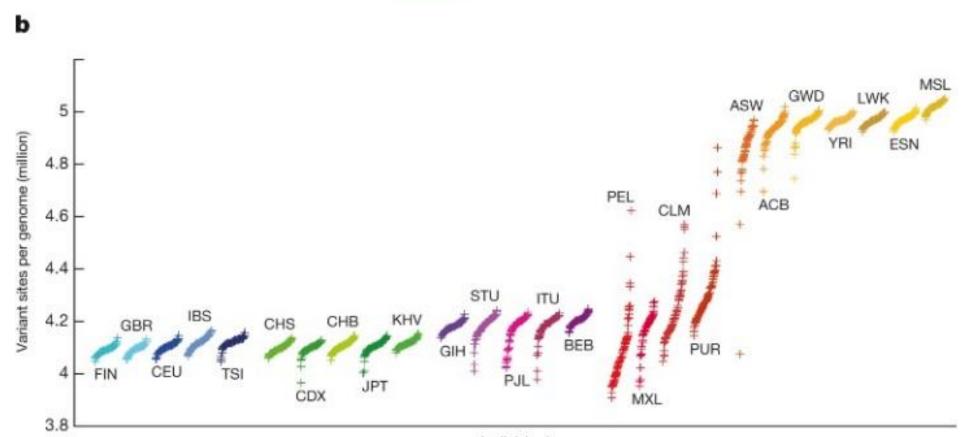
SV type distribution

Geyskens et al., unpublished

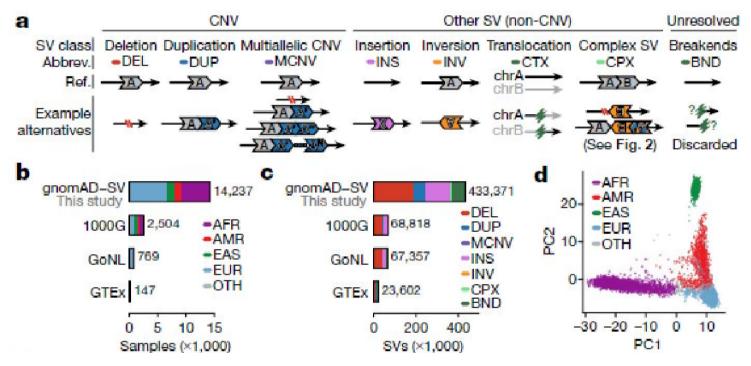


1000 genome project/resource

1000 Genomes Mapping Human Genetic Variation CAGADGE


- Comprehensive description of common human genetic variation
- Latest report: genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping.
- Results:
 - over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs)
 - 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes.
 - This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries.

SNP variation/population

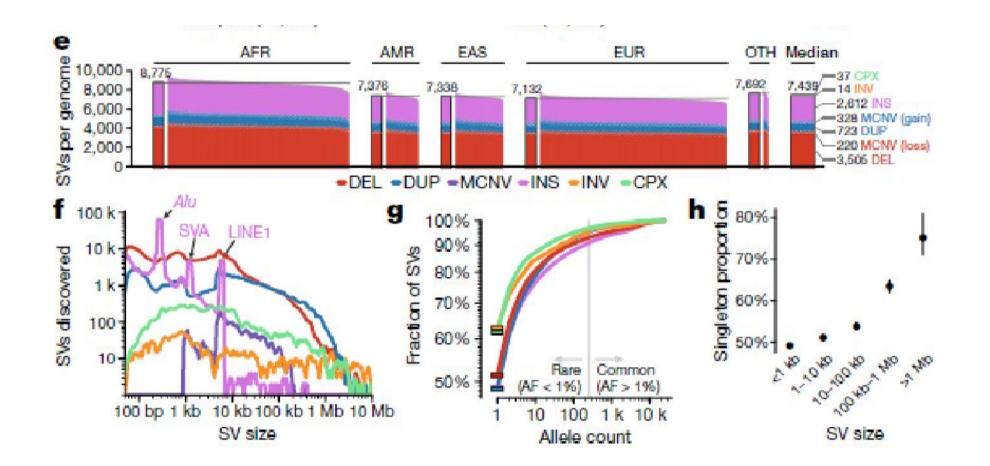

SNP variation/population

KU LEUVEN

Structural variation

genome aggregation database or GnomAD Based on short read sequencing in 14290 genomes

Article


https://doi Received: Accepted: Published Open acce

A structural variation reference for medical and population genetics

oi.org/10.1038/s41586-020-2287-8	Ryan L. Collins ^{1,2,3,157} , Harrison Brand ^{1,2,4,157} , Konrad J. Karczewski ^{1,5} , Xuefang Zhao ^{1,2,4} ,
: 2 March 2019	Jessica Alföldi ¹⁵ , Laurent C. Francioli ^{15,6} , Amit V. Khera ¹² , Chelsea Lowther ^{12,4} , Laura D. Gauthier ^{1,7} , Harold Wang ¹² , Nicholas A. Watts ¹⁵ , Matthew Solomonson ^{1,5} ,
d: 31 March 2020	Laura D. Gauthier ¹⁴ , Harold Wang ¹⁴ , Nicholas A. Watts ¹⁴ , Matthew Solomonson ¹⁴ , Anne O'Donnell-Luria ¹⁵ , Alexander Baumann ⁷ , Ruchi Munshi ⁷ , Mark Walker ^{1,7} ,
d online: 27 May 2020	Christopher W. Whelan ⁷ , Yongqing Huang ⁷ , Ted Brookings ⁷ , Ted Sharpe ⁷ , Matthew R. Stone ¹² ,
2655	Elise Valkanas ^{12,3} , Jack Fu ^{12,4} , Grace Tiao ¹⁵ , Kristen M. Laricchia ¹⁵ , Valentin Ruano-Rubio ⁷ , Christine Stevens ¹ , Namrata Gupta ¹ , Caroline Cusick ¹ , Lauren Margolin ¹ , Genome
k for updates	Aggregation Database Production Team*, Genome Aggregation Database Consortium*, Kent D. Taylor ^e , Henry J. Lin ^a , Stephen S. Rich ^a , Wendy S. Post ¹⁰ , Yii-Der Ida Chen ^a ,
	Jerome I. Rotter ⁸ , Chad Nusbaum ¹¹⁵⁴ , Anthony Philippakis ⁷ , Eric Lander ¹¹¹² , Stacey Gabriel ¹ , Benjamin M. Neale ^{12,513} , Sekar Kathiresan ^{12,614} , Mark J. Daly ^{12,513} , Eric Banks ⁷ ,
	Daniel G. MacArthur ^{1,2,5,6,155,156} & Michael E. Talkowski ^{1,2,4,13}

KU LEUVEN

Structural variation characteristics

Mapping full spectrum of structural variation

- Human Structural variation consortium
- Comprehensive structural variation analysis with a multitude of techniques.
- 3 parent-child trios (Han, Puerto Rican, Yoruban)

Table 1 Summary of	nary of sequencing statistics				
	Avg. seq. coverage	Avg. frag. length	Physical coverage		
Pacific Biosciences	39.6 (child) 20.03 (parent)	8165 (child) 9619 (parent)	39.6		
Oxford Nanopore	18.9 (HG00733)	11,993	18.9		
Illumina short insert	74.5	694	171		
Illumina IIW GS	3	3475	159		
Illumina 7 kb JMP	1.1	6973.2	39.2		
10X Chromium	82.4	90,098	53.9		
Bionano Genomics	N/A	2.81E + 05	116.7		
Tru-Seg SLR	3.47	4900	3.47		
Strand-seq	N/A	N/A	5.87		
HFC	19.49	1.03E + 07	N/A		
Total	22356		607.08		

ARTICLE

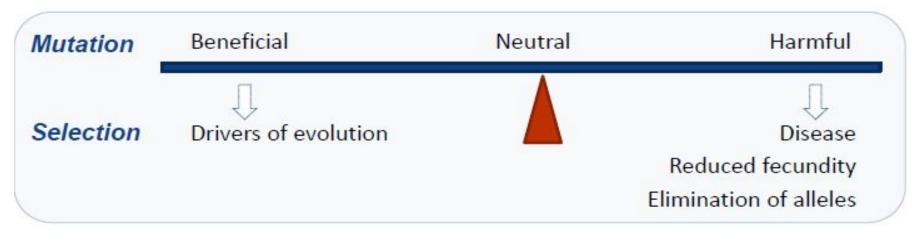
https://doi.org/10.1038/s41467-018-08148-z OPEN

Multi-platform discovery of haplotype-resolved structural variation in human genomes

Physical coverage is given for Humina short insert, HWCS, 7kb JMP. 10X Chromium physical coverage is estimated read cloud coverage

For HI-C, fragment length is the distance between two read ends for intra-chromosome read pairs Mark J.P. Chaisson et al."

Per genome variation


(3-7x more than known from short read sequencing)

818000 indels (<50bp) 31599 structural variants (>50bp) 156 inversions (>50bp)

Origin and frequency of de novo variation

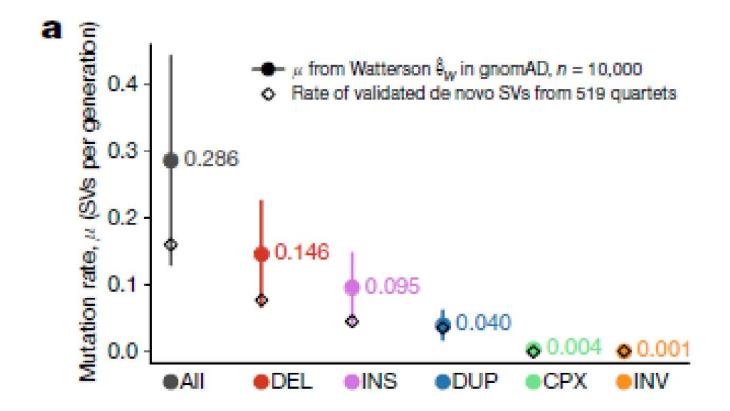
Selection-mutation balance

"balance between genetic copying errors that turn normal alleles into harmful mutations, and selection eliminating these mutations"

Frequency of de novo mutations

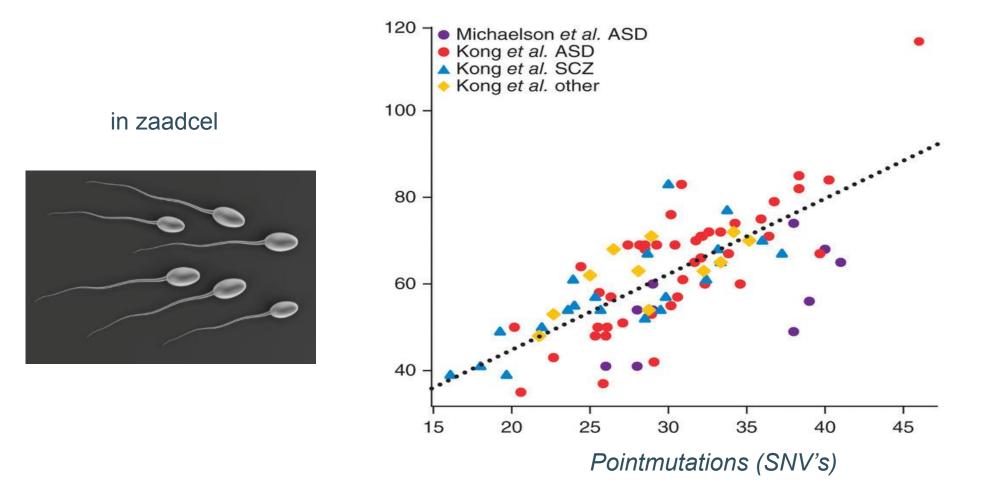
Estimation per generation mutation rate

7.6 x 10⁻⁹ to 2.2 x 10⁻⁸ = **50-100** *de novo* mutations per genome These mutations are under limited selective pressure!


> Estimated **de novo mutations per exome**: **1.4 exonic mutatons/ individual**

Frequency of de novo structural variation

0.29 de novo SVs per generation in regions of the genome accessible to short-read WGS or 1 per 2-8 live births


KU LEUVEN

Frequency varies along types of SVs

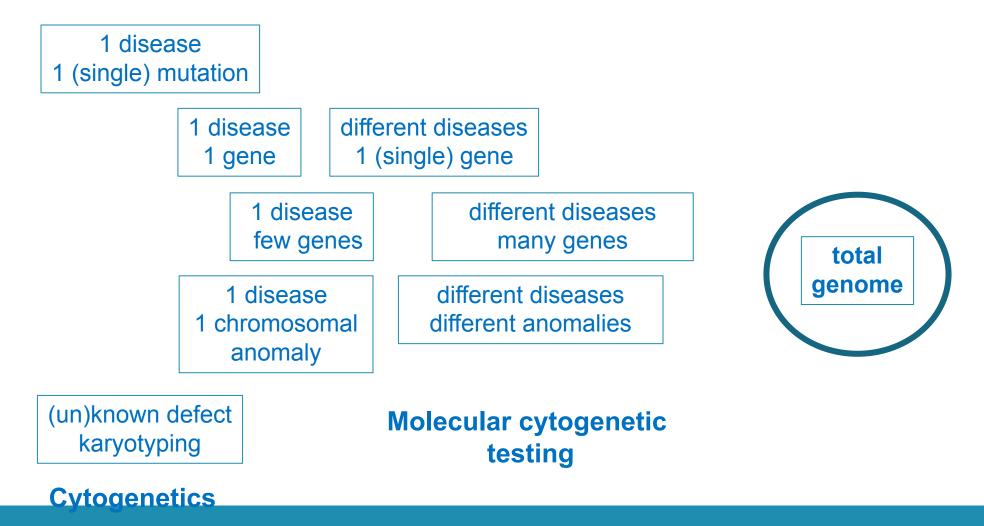


Collins et al., Nature, 2020^{Genetic Diversity} KU LEUVEN

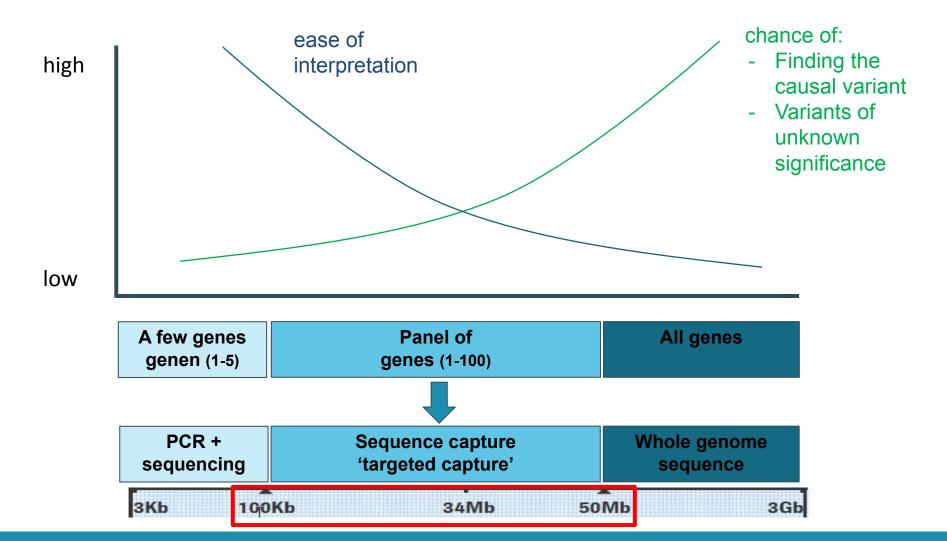
SNV frequency increases with paternal age

The de novo mutation rate is the som of mutations in sperm, oocyte and first 100 cell divisions

Overview


Variation Detected in a Typical Human Genome

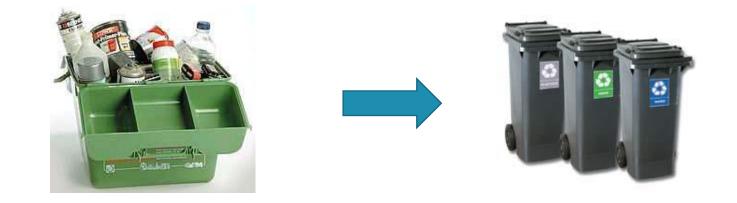
Individuals vary greatly in a wide range of biological functions, determined in part by variation among their genomes. Any individual genome will contain the following:

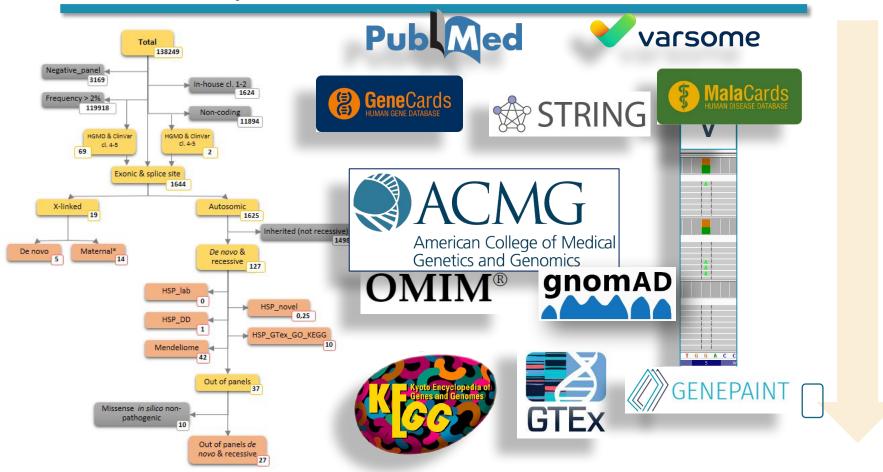

- ≈5-10 million SNPs (varies by population)
- 25,000-50,000 rare variants (private mutations or seen previously in < 0.5% of individuals tested)
- ≈75 new base pair mutations not detected in parental genomes
- 3-7 new CNVs involving ≈500 kb of DNA
- 200,000-500,000 indels (1-50 bp) (varies by population)
- 500-1000 deletions 1-45 kb, overlapping ≈200 genes
- ≈150 in-frame indels
- ≈200-250 shifts in reading frame
- 10,000-12,000 synonymous SNPs
- 8,000-11,000 nonsynonymous SNPs in 4,000-5,000 genes
- 175-500 rare nonsynonymous variants
- 1 new nonsynonymous mutation
- ≈100 premature stop codons
- 40-50 splice site-disrupting variants
- 250-300 genes with likely loss-of-function variants
- ≈25 genes predicted to be completely inactivated

Genetic testing

Molecular testing

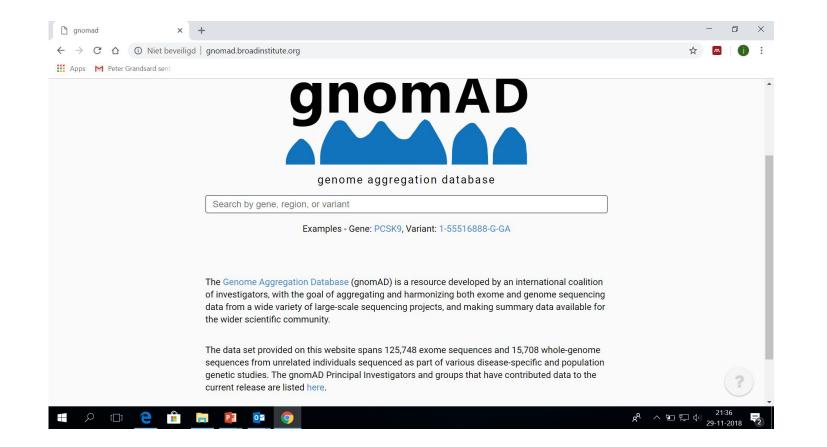
Molecular diagnostics WES/WGS




KU LEUVEN

Interpretation of variants

- Databases
 - SNP Databases > population frequenties
 - (internationale en lokale) mutation databases



WES/WGS analysis: Databases

gnomAD (past Exac) database

Gene identification from genome wide population sequencing data based on 140000 exomes

Probability of being LOF intolerant

- Haploinsufficiency to estimate the total number of autosomal recessive human protein-coding genes based on mutation tolerance
- Haploinsufficient genes do not tolerate loss-off-function (LOF) variants in one of the two alleles.
- Their probability of being LOF intolerant (pLI) is thus close to 1.
- In Gnomad pLI is measure by analysis of 140k exomes

Database of genomic variants

(curated structural variation)

	Genor	ariants tural variation
About the Project Genome Browser	Links Submissions	FAQ Training Resources

Keyword, Landmark or Region Search: Search GRCh37/hg19 ~

Examples: RP11-34P13; CFTR, 7q11.21; chr7:71890181-72690180

Find DGV Variants

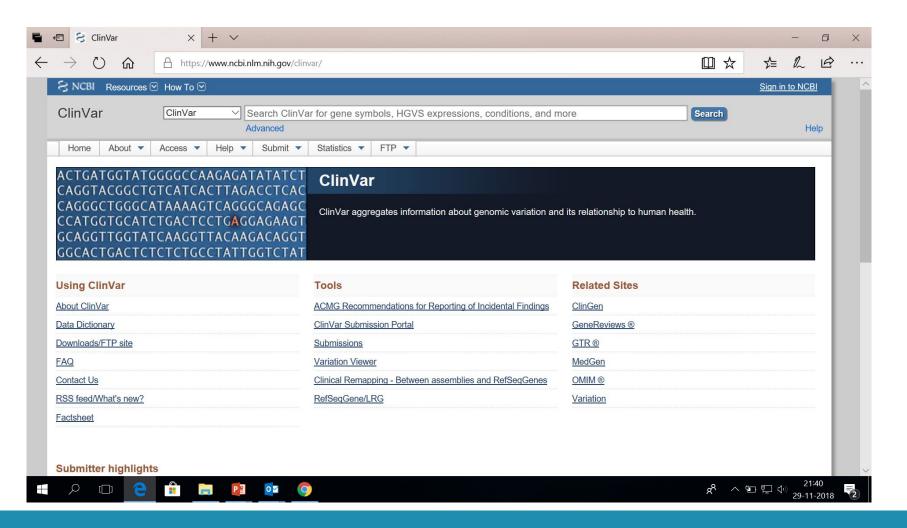
by Studyby Sampleby Methodby Variantby Platformby Chromosome

Summary Statistics

 Stat
 Merged-level
 Sample-level

 CNVs:
 983845
 7021692

 Inversions:
 4083
 32044


 Number of Studies:
 75

News: February 2020 Update and Newsletter has been issued

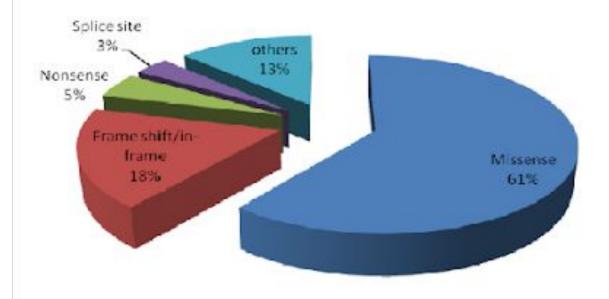
Human Gene mutation database

gnomad	× 🕐 HGMD® home page × +			-	٥
\rightarrow C D	③ Niet beveiligd www.hgmd.cf.ac.uk/ac/index.php		☆	M	1
Apps M Peter	Grandsard sent				
	The Human Gene Mutation Database				
	at the Institute of Medical Genetics in Cardiff				GEN
намр	Home Search help Statistics New genes What is new Background Publications Contact Register Login LSDBs Other links			Silv	ICLI I
TIOND	Gene symbol 🔻 Go! Symbol:	Missense/nons	ense	T	Go!
Professional Professional	lease note that this less up-to-date public version of our database is freely available only to <u>registered</u> users from academic institutions/non-profit organisations. All commercial users are required to purc r commercial partner. A license to <u>HGMD Professional</u> is available to both commercial and academic/non-profit users wishing to access the most up-to-date version of the database (visit QLAGEN® ofessional). Read more about how HGMD is <u>funded</u> . You may not copy, store or re-distribute HGMD data without express written permission (i) from the curators or (ii) via your license agreement. 17. All rights reserved.	to request a free trial of HG	MD	Register fo Public Ver	
able:	Description:	Public entries: This site. Academic/non-profit users only		entries: rofessional 2	•
	Mutation totals (as of 2018-11-29)	157114		2	40269
ene symbol	The gene description, gene symbol (as recommended by the HUGO Nomenclature Committee) and chromosomal location is recorded for each gene. In cases where a gene symbol has not yet been made official, a provisional symbol has been adopted which is denoted by lower-case letters.	6531			9976
NA sequence	cDNA reference sequences are provided, numbered by codon.	6531			10339
enomic ordinates	Genomic (chromosomal) coordinates have been calculated for missense/nonsense, splicing, regulatory, small deletions, small insertions and small indels.	0		2	14308
GVS menclature	Standard HGVS nomenclature has been obtained for missense/nonsense, splicing, regulatory, small deletions, small insertions and small indels.	0		2	14691
				1	37354
issense/nonsense	Single base-pair substitutions in coding regions are presented in terms of a triplet change with an additional flanking base included if the mutated base lies in either the first or third position in the triplet.	87397			
		87397		:	21222
fissense/nonsense plicing tegulatory	either the first or third position in the triplet. Mutations with consequences for mRNA splicing are presented in brief with information specifying the relative position of the lesion with respect to a numbered intron donor or acceptor splice site. Positions given as positive integers refer to a 3' (downstream) location, negative integers refer to a 5' (upstream)				21222 4189

Clinvar

HUMAN MUTATION Database in BRIEF 31: E1801-E1810 (2010) Online

DATABASE IN BRIEF


3

LQTS Gene LOVD Database

HUMAN MUTATION

Tao Zhang^{1,2*}, Arthur Moss³.*, Peikuan Cong²,*, Min Pan ².*, Bingxi Chang⁴, Liangrong Zheng⁵, Quan Fang⁴, Wojciech Zareba³, Jennifer Robinson³, Changsong Lin², Zhongxiang Li⁶, Junfang Wei⁷, Qiang Zeng⁸, Long QT International Registry Investigators, HVP-China Investigators, and Ming Qi^{1,2,9**}

© American College of Medical Genetics and Genomics ACMG STANDARDS AND GUIDELINES in Medicine

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

Class of risk	Clinical significance
1	not patogenic
2	likely not pathogenic
3	uncertain
4	likely pathogenic
5	definitely patogenic

Plon SE, Eccles DM, Easton D, et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat. 2008; 29:1282–1291. [PubMed: 18951446]

ACMG STANDARDS AND GUIDELINES

RICHARDS et al | Interpretation of sequence variants

Table 3 Criteria for classifying pathogenic variants

Evidence of pathogenicity	Category				
Very strong	PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease				
	Caveats:				
	 Beware of genes where LOF is not a known disease mechanism (e.g., GFAP, MYH7) 				
	 Use caution interpreting LOF variants at the extreme 3' end of a gene 				
	 Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of th protein intact 				
	Use caution in the presence of multiple transcripts				
Strong	PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change				
	Example: Val→Leu caused by either G>C or G>T in the same codon				
	Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level				
	PS2 De novo (both maternity and paternity confirmed) in a patient with the disease and no family history				
	Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, and so on, can contribute to nonmaternity.				
	PS3 Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product				
	Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well established.				
	PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls				
	Note 1: Relative risk or OR, as obtained from case–control studies, is >5.0, and the confidence interval around the estimate of relative risk or OR does not include 1.0. See the article for detailed guidance.				
	Note 2: In instances of very rare variants where case—control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence.				
Moderate	PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation				

KU LEUVEN

	Ben			Pathog	genic	
	Strong	Supporting	Supporting	Moderate	Strong	Very Strong
Population Data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases <i>PM2</i>	Prevalence in affecteds statistically increased over controls <i>PS4</i>	
Computational And Predictive Data		Multiple lines of computational evidence suggest no impact on gene /gene product <i>BP4</i> Missense in gene where only truncating cause disease <i>BP1</i> Silent variant with non predicted splice impact <i>BP7</i>	Multiple lines of computational evidence support a deleterious effect on the gene /gene product <i>PP3</i>	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before <i>PM5</i> Protein length changing variant <i>PM4</i>	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional Data	Well-established functional studies show no deleterious effect <i>BS3</i>		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation <i>PM1</i>	Well-established functional studies show a deleterious effect <i>PS3</i>	
Segregation Data	Non-segregation with disease BS4		Co-segregation with disease in multiple affected family members PP1	Increased segregation dat	a >	
De novo Data				<i>De novo</i> (without paternity & maternity confirmed) <i>PM6</i>	<i>De novo</i> (paternity & maternity confirmed	2.3
Allelic Data		Observed in <i>trans</i> with a dominant variant <i>BP2</i> Observed in <i>cis</i> with a pathogenic variant <i>BP2</i>		For recessive disorders, detected in <i>trans</i> with a pathogenic variant <i>PM3</i>		
Other Database		Reputable source w/out shared data = benign <i>BP6</i>	Reputable source = pathogenic PP5			
Other Data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

68

versity **KULEUVEN**

	Ben	ign		Patho	genic	
	Strong	Supporting	Supporting	Moderate	Strong	Very Strong
Population Data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases <i>PM2</i>	Frevalence in ffecteds statistically increased over controls <i>PS4</i>	
Computational And Predictive Data		Multiple lines of computational evidence suggest no impact on gene /gene product <i>BP4</i> Missense in gene where only truncating cause disease <i>BP1</i> Silent variant with non predicted splice impact <i>BP7</i>	Multiple lines of computational evidence support a deleterious effect on the gene /gene product <i>PP3</i>	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before <i>PM5</i> Protein length changing variant <i>PM4</i>	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional Data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation <i>PM1</i>	Well-established functional studies show a deleterious effect <i>PS3</i>	
Segregation Data	Non-segregation with disease <i>BS4</i>		Co-segregation with disease in multiple affected family members PP1	Increased segregation dat	a >	
De novo Data				<i>De novo</i> (without paternity & maternity confirmed) <i>PM6</i>	De novo (paternity & maternity confirmed	23
Allelic Data		Observed in <i>trans</i> with a dominant variant <i>BP2</i> Observed in <i>cis</i> with a pathogenic variant <i>BP2</i>		For recessive disorders, detected in <i>trans</i> with a pathogenic variant <i>PM3</i>		
Other Database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other Data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

KU LEUVEN

versity

	Ben	ign		Pathog	genic	
	Strong	Supporting	Supporting	Moderate	Strong	Very Strong
Population Data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in ffecteds statistically increased over controls <i>PS4</i>	
Computational And Predictive Data		Multiple lines of computational evidence suggest no impact on gene /gene product <i>BP4</i> Missense in gene where only truncating cause disease <i>BP1</i> Silent variant with non predicted splice impact <i>BP7</i>	Multiple lines of computational evidence support a deleterious effect on the gene /gene product <i>PP3</i>	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before <i>PM5</i> Protein length changing variant <i>PM4</i>	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional Data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation <i>PM1</i>	Well-established functional studies show a deleterious effect <i>PS3</i>	
Segregation Data	Non-segregation with disease BS4		Co-segregation with disease in multiple affected family members PP1	Increased segregation dat	a >	
De novo Data				<i>De novo</i> (without paternity & maternity confirmed) <i>PM6</i>	<i>De novo</i> (paternity & maternity confirmed <i>PS2</i>	
Allelic Data		Observed in <i>trans</i> with a dominant variant <i>BP2</i> Observed in <i>cis</i> with a pathogenic variant <i>BP2</i>		For recessive disorders, detected in <i>trans</i> with a pathogenic variant <i>PM3</i>		
Other Database		Reputable source w/out shared data = benign <i>BP6</i>	Reputable source = pathogenic PP5			
Other Data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

versity **KULEUVEN**

	ے Ben			Patho	genic	
	Strong	Supporting	Supporting	Moderate	Strong	Very Strong
Population Data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases <i>PM2</i>	Prevalence in ffecteds statistically increased over controls PS4	y
Computational And Predictive Data		Multiple lines of computational evidence suggest no impact on gene /gene product <i>BP4</i> Missense in gene where only truncating cause disease <i>BP1</i> Silent variant with non predicted splice impact <i>BP7</i>	Multiple lines of computational evidence support a deleterious effect on the gene /gene product <i>PP3</i>	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before <i>PM5</i> Protein length changing variant <i>PM4</i>	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional Data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation <i>PM1</i>	Well-established functional studies show a deleterious effect <i>PS3</i>	
Segregation Data	Non-segregation with disease BS4		Co-segregation with disease in multiple affected family members PP1	Increased segregation dat	a >	
De novo Data				<i>De novo</i> (without paternity & maternity confirmed) <i>PM6</i>	De novo (paternity a maternity confirme PS2	
Allelic Data		Observed in <i>trans</i> with a dominant variant <i>BP2</i> Observed in <i>cis</i> with a pathogenic variant <i>BP2</i>		For recessive disorders, detected in <i>trans</i> with a pathogenic variant <i>PM3</i>		
Other Database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other Data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

KU LEUVEN

	<u> </u>		Pathogenic				
	Strong	Supporting	Supporting	Moderate	Strong	Very Strong	
Population Data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases <i>PM2</i>	Prevalence in ffecteds statisticall increased over controls PS4	ly	
Computational And Predictive Data		Multiple lines of computational evidence suggest no impact on gene /gene product <i>BP4</i> Missense in gene where only truncating cause disease <i>BP1</i> Silent variant with non predicted splice impact <i>BP7</i>	Multiple lines of computational evidence support a deleterious effect on the gene /gene product <i>PP3</i>	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before <i>PM5</i> Protein length changing variant <i>PM4</i>	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1	
Functional Data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation <i>PM1</i>	Well-established functional studies show a deleterious effect <i>PS3</i>		
Segregation Data	Non-segregation with disease BS4		Co-segregation with disease in multiple affected family members PP1	Increased segregation dat	a >		
De novo Data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity maternity confirme PS2		
Allelic Data		Observed in <i>trans</i> with a dominant variant <i>BP2</i> Observed in <i>cis</i> with a pathogenic variant <i>BP2</i>		For recessive disorders, detected in <i>trans</i> with a pathogenic variant <i>PM3</i>			
Other Database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5				
Other Data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4				

KU LEUVEN

72

Pathogenic	(i) 1 Very strong (PVS1) AND				
	(a) \geq 1 Strong (PS1–PS4) OR				
	(b) \geq 2 Moderate (PM1–PM6) OR				
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR				
	(d) ≥ 2 Supporting (PP1-PP5)				
	(ii) ≥ 2 Strong (PS1–PS4) OR				
	(iii) 1 Strong (PS1–PS4) AND				
	(a)≥3 Moderate (PM1–PM6) OR				
	(b)2 Moderate (PM1–PM6) $AND \ge 2$ Supporting (PP1–PP5) OR				
	(c)1 Moderate (PM1–PM6) AND \geq 4 supporting (PP1–PP5)				
Likely pathogenic	 (i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR 				
	 (ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR 				
	 (iii) 1 Strong (PS1–PS4) AND ≥ 2 supporting (PP1–PP5) OR 				
	(iv) ≥3 Moderate (PM1–PM6) OR				
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR				
	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)				
Benign	(i) 1 Stand-alone (BA1) OR				
	(ii) ≥2 Strong (BS1–BS4)				
Likely benign	(i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR				
	(ii) ≥2 Supporting (BP1–BP7)				
Uncertain	(i) Other criteria shown above are not met OR				
significance	 (ii) the criteria for benign and pathogenic are contradictory 				

Table 5 Rules for combining criteria to classify sequence

PATHOGENICITY CALCULATOR

Users of the calculator can contribute their interpretation, evidence codes, evidence, and assertion in the Pathogenicity Calculator Evidence Repo (PCER) by clicking "Export to PCER". The shared data is instantly available through ClinGen Allele Registry and PCER.

ClinGen Pathogenicity Calculator team is thankful to our <u>distinguished users</u> who donated their interpretations in ClinVar.

WHAT IS THE CLINGEN PATHOGENICITY CALCULATOR?

The shift from genetic testing of individual genes to exome and genome sequencing has been accompanied by new challenges in genome interpretation. The American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) have published Standards and Guidelines for the Interpretation of Sequence Variants. To enable wide application of the ACMG/AMP and similar guidelines and the development of collective knowledge by the community, ClinGen has developed the ClinGen Pathogenicity Calculator. By automating the formal reasoning, the Calculator eliminates errors in rule application and makes it possible to automatically calculate provisional conclusions based on latest evidence. Moreover, the Calculator makes reasoning explicit by documenting applicable rules, evidence codes, and links to supporting data. By explicitly communicating the reasoning behind a conclusion about pathogenicity of any specific variant, the Calculator enables critical evaluation of the reasoning and facilitates resolution of conflicting conclusions.

NC_000023.11:g.101399747C>T, CM000685.2:g.101399747C>T, NC_000023.10:g.100654735C>T, CM000685.1:g.100654735C>T, NC_000023.9:g.100541391C>T, NC_007119.1:g.13217C>A, LRG_672:g.13217G>A, NM_0011692.c:C40-801C>A, LRG_67211:c:640-801G>A, NM_001199973.1:c.408+4290C>T, NM_001199974.1:c.285+7925C>T, XR_938397.1:n.721G>A, ENST00000218516.3:c.640-801G>A, ENST00000409170.3:c.300+4290C>T, ENST00000409338.5:c:177+7925C>T, ENST00000468823.1:n.189-801G>A, ENST00000409170.3:c.300-4290C>T, ENST00000486121.5:n.685-801G>A, ENST00000493936.5:c."24G>A

Report generated dynamically by BCM's clinden

Powered by Genboree.

Gene

GLA

Phenotype Fabry disease

Mode of Inheritance

X-linked Recessive

Evidence

PP1

Category : Pathogenic > Supporting > Segregation Data ACMG Text : Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease User Summary : Allele cosegregated with disease Supporting Links : • Taiwan population ^(Link)

PS4

Category : Pathogenic » Strong » Population Data ACMG Text : Prevalence in affecteds statistically increased over controls User Summary : Higher prevalence over control

Supporting Links :

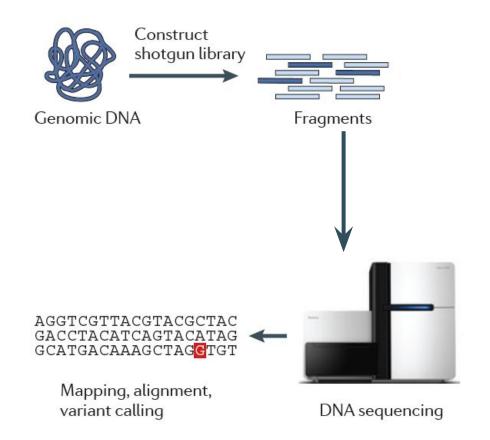
 Paper reporting unexpected high prevalence of the cardiac variant IVS4+919G>A among both newborns and patients with idiopathic hypertrophic cardiomyopathy in the Taiwan Chinese population ^[Link]

PS3

Category : Pathogenic » Strong » Functional Data ACMG Text : Well-established functional studies show a deleterious effect User Summary : Functional studies support this tag. Supporting Links : • Plasma ?-galactosidase A activity assay was 10.4?±?11.2% of normal in the men and 48.6?±?19.5% of normal in the women ^[Link]

PVS1-Strong

Category : Pathogenic » Strong » Computational And Predictive Data ACMG Text : PVS1 downgraded in strength to Strong User Summary : Null variant but incomplete alternate splicing

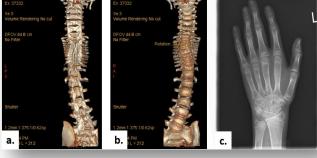


Rules Passed : • Pathogenic.Strong >=2

Fig. 3 A sample summary

port generated by rathogenicity Calculator. The report itself is printable as PDF and downloadable by the user

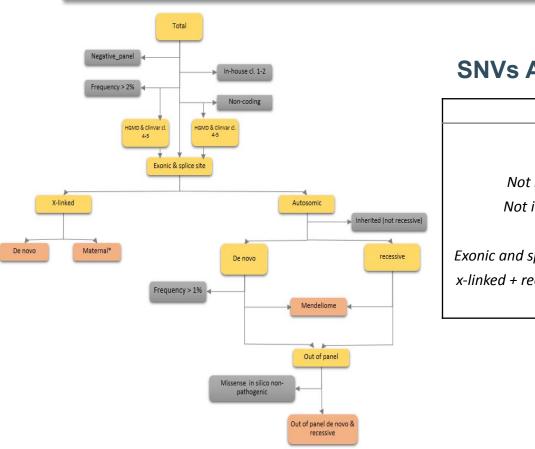
Whole-Genome SEQUENCING


Anamnesis:

- Only child of an healthy unrelated couple.
- At birth facial dysmorphism with polymalformative syndrome
- Large anterior fontanella
- Microcephaly
- Right-turning Molecular analysis:
- Abdominal wa Karyotyping
- Cleft palate • FISH for 22q11.2 and 9p-
- Hypoplasia of
 Array-CGH
- Cryptorchidia
- Major hearing
- 8q12.1(56899737-57048789)x3mat
- 16p13.3(4379999-4443009)x3mat
- Hypertension
- likely benign
- Feeding problems
- Short stature
- Congenital thoracic vertebral fusion

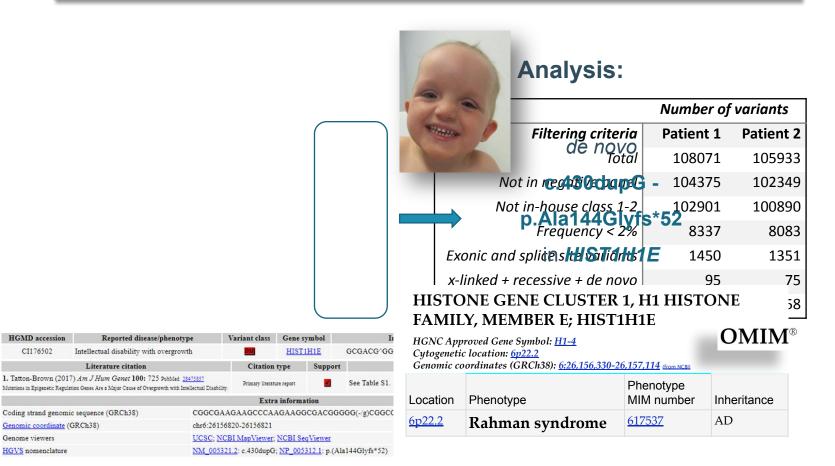
 severe torsional scoliosis

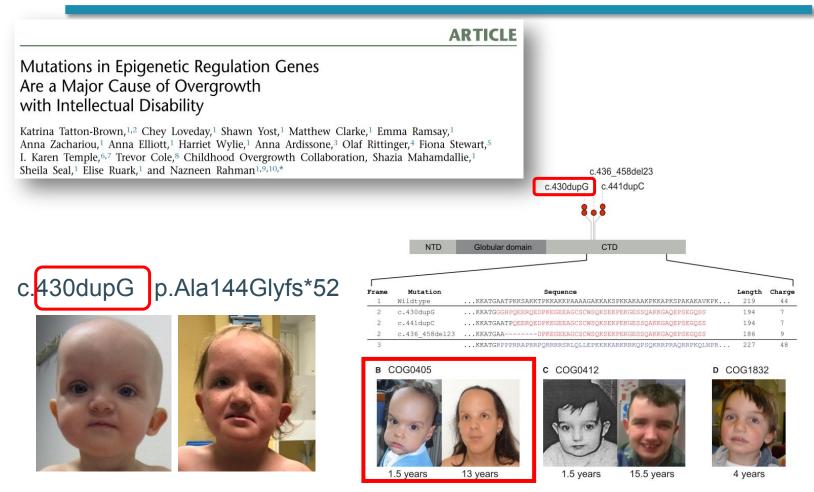
Patient 1



Patient 2

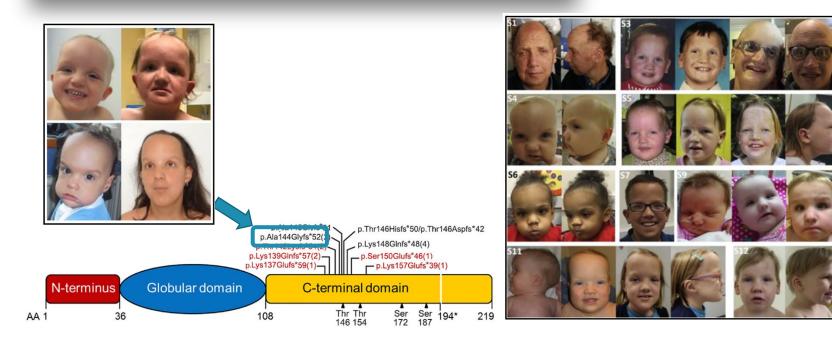
- Hypotonia
- Failure to thrive
- Progressive macrocephaly (H&W at p3, OFC at p97)
- Periventricular leukomalacia on imaging
- Epilepsy, Molecular analysis:
- Frontal b
 Array CGH
- Deep-set
 - Fragile X
- Downslate
 Mild hype
 PTEN, MID1 and NEMO genes
- Mild intel gene panel for Rasopathies
- Clear pic (PTPN11, SOS1, RAF1, RIT1, KRAS, BRAF,
 - Ver MEK1, MEK2 and HRAS)
 - Mil Mendeliome in 2015
 - Small and fragile teeth




SNVs Analysis:

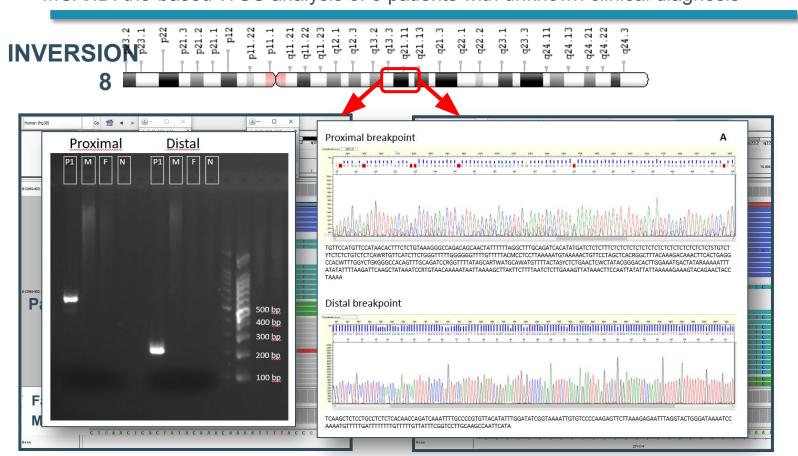
Number of variants										
Filtering criteria		Patient 1	Patient 2							
Total		108071	105933							
Not in negative panel		104375	102349							
Not in-house class 1-2		102901	100890							
Frequency < 2%		8337	8083							
Exonic and splice site variants		1450	1351							
x-linked + recessive + de novo		95	75							
AD filtering		60	58							

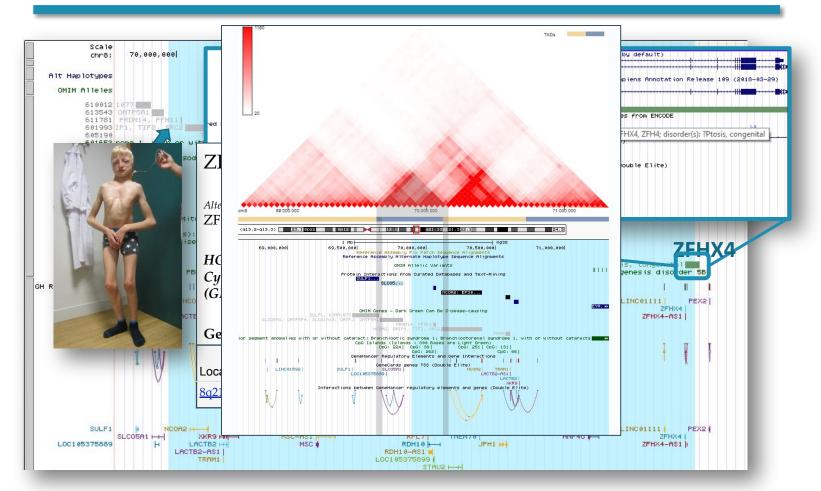
Negative



Am J Hum Genet. 2019 Sep 5;105(3):493-508. doi: 10.1016/j.ajhg.2019.07.007. Epub 2019 Aug 22.

Aberrant Function of the C-Terminal Tail of HIST1H1E Accelerates Cellular Senescence and Causes Premature Aging.


Elex E¹, Martinelli S², Van Dijck A³, Ciolfi A⁴, Cecchetti S⁵, Coluzzi E⁶, Pannone L⁷, Andreoli C⁸, Radio FC⁴, Pizzi S⁴, Carpentieri G⁷, Bruselles A², Catanzaro G⁹, Pedace L¹⁰, Miele E¹⁰, Carciarono E¹¹, Ge X¹², Chijiwa C¹³, Lewis MES¹³, Meuwissen M¹⁴, Kenis S¹⁵, Van der Aa N¹⁴, Larson A¹⁶, Brown K¹⁶, Wasserstein MP¹⁷, Skotko BG¹⁸, Begtrup A¹⁹, Person R¹⁹, Karayiorgou M²⁰, Roos JL²¹, Van Gassen KL²², Koopmans M²², Bijlsma EK²³, Santen GWE²³, Barge-Schaapveld DOCM²³, Ruivenkamp CAL²³, Hoffer MJV²³, Lalani SR²⁴, Streff H²⁴, Craigen WJ²⁴, Graham BH²⁵, van den Elzen APM²⁶, Kamphuis DJ²⁷, Öunap K²⁸, Reinson K²⁸, Pajusalu S²⁹, Wojcik MH³⁰, Viberti C³¹, Di Gaetano C³¹, Bertini E⁴, Petrucci S³², De Luca A³³, Rota R¹⁰, Ferretti E³⁴, Matullo G³¹, Dallapiccola B⁴, Sgura A⁶, Walkiewicz M³⁵, Kooy RE³⁶, Tartaglia M³⁷.



eqnan hr1	es start	end	width		CORRECT ON SHARE	CORE AND	22.00	32.0		ombined_geno n				freq		MAD lu	mpy_en lu	mpy_ch	OMIM_ye OMIM_g
9		1 25410000		00 DEL		[_LUM 1/1	0/				HCE .		11 DGV	NA	NA				RHCE
	MC	A/ID:	trio	-bas	ed	WG:	S ar	nalys	sis of	3 patie	nts v	vith unk	nowr	n Clir	lica	l dia	agno	SIS	
	7050800	1 70512000	400	0 DEL	NOT	LUM 1/1	0/	1 (0/1 1/	1;0/1;0/1 SI	MA5		1 NA	NA	NA				
5 7		1 38358000		0 DEL		LUM 1/1	0/				RG-AS1 T	RGV4	0 NA	NA	NA				
	117800	1 1181000	300	0 DEL		Qualit 1/1	0,	1 (TD-3080FC	TD-3080F	0 NA	NA	NA	1	L180617 ch	ır5	
ame	s start	end	width	hange_ty	p QUA	AL_lumpy	CONTRACTOR OF STREET, STRE	n <mark>51_</mark> conse	n <mark>52_conser</mark> C	Combined_genotyp	100 CO	No. 1	nclum_exon	DGV	CONTRACTOR OF THE OWNER.	GNOMA	Dumpy_end	dmpy_ch	rorMIM_yelloMIM_gre
hr6 hr6	32637001	32643000	6000	DEL	NOT	T HIMDY	0/1 0/1	0/0	0/0	0/1 • 0/0 • 0/0	HLA-DO HLA-DR		7 10	NA NA	NA NA	NA			HLA-DQA HLA-DRB5
hr8	C	NVs	An	alv	'Sis	s: 🗖	0/1		lega	itive 🛽	OR4F21	strats	7	NA	NA	NA		_	nos onos
r15	10			J		Y	0/1	(-		OR4F4	· ·	1	NA	NA	NA			
14 r8						LUMPY	0/1	0/0	0/0	0/1;0/0;0/0	ACOT1,		12	NA	NA	NA			ACOT1 FA1
r19	5. 3	Vs A	na	iysi									Numb	er of	^r var	iant	S		2DL3
r22	2:									- ·	,								GGT2
r19 r17	54829001 36175	54845000	16000	DEL						Tot	ai			204	14				2DS4 KIR3DL1 TBC1[
ir8	72960	10 B	- Aller	DEL					Eiltori	ng criter	ia T	DEL/DUP			INS		D	ND	
11	19450	Maria		DEL						•			/ 11 1 1	-	1143				PL23
3 17	130082 36390			DEL			6	Good	qualit	y and rai	re	737			3795	5	2	827	1D3F
7	77009	1000		DEL					,			-					-	-	
	32524	-	0	DEL						> 10 k	pp	*			165			*	DRB5
5	34387 13598	an		DEL	مم ا	novo	ana	Iroco		containin									,GOL(TED
r1	143541		1	DEL	De	nove	unu	rece	essive	Lontainin	iy	44	11			20			SRGA
r2	87709			DEL	l c	aene d	and/	or re	aulato	ory regior	าร	44			20		·	40	
r3 11	46754501 1964501	1978500	14000	DEL	3	,	,		5	/ 3		_						_	
15	84362001	84383500	21500	DEL				IGV	manu	al filterir	ng	3			4			0	
19	27399501 21459501	27633500 21511500	234000 52000	DEL			0/1	0/0	0/0	0/1;0/0;0/0			1	NA	NA	NA			
22 r7	74885501	74894000	8500	DEL		T_LUMPY	0/1 0/1	0/0	0/0 0/0	0/1;0/0;0/0 0/1;0/0;0/0		2,TMEM19. 5,STAG3L2	10 0	NA NA	NA NA	NA NA			
22	24251001	24252500	1500	DEL	NOT	T_LUMPY	0/1	0/0	0/0	0/1;0/0;0/0	POM12	119P PO.,121		NA	NA	NA			
7 5	38348501 70508001	38358000 70512000	9500 4000	DEL DEL		T_LUMPY	1/1 1/1	0/1 0/1	0/1 0/1	1/1;0/1;0/1 1/1;0/1;0/1	TRG-AS SMA5	1 TRGV4	0	NA NA	NA NA	NA NA			
o m •	start 💌	end -	-			50_cons = 5				ty v ncbiRefS v ge		nvers		DGV -			umpy_e = n	npy_ch -	OMIM_ OMIM_gre •
rX	1293538	1294092	555	DUP	PASS	0/1	0/0	0/0	0/1;0/0;0/	CSF2RA,MIF.	CS			NA	NA	NA	1294025	chrX	CSF2RA
.9 8	434226 55808501	434587 55967500	362 159000	DUP	PASS	0/1 0/1	0/0	0/0	0/1;0/0;0/0 0/1;0/0;0/0			IC2 ; . N,SNORA1B,TGS1 ; L	0 .YN 51	NA NA	NA NA	NA NA	434587 55967438	chr19 chr8	SHC2 LYN,TGS1
5	30986514	30987274	761	DUP	PASS	0/1	0/0	0/0	0/1;0/0;0/0	0 MUC21 .	M	UC21;.	1	NA	NA	NA	30987274	chr6	MUC21
7	158440904 86811036	158441221 86812190	318 1155	DUP DUP	PASS	0/1 1/1	0/0 0/0	0/0 0/1	0/1;0/0;0/0 1/1;0/0;0/2		698	93659	9-76	806	72		1,58E+08 86812158	chr7 chr12	PTPRN2
2	20036575	20036932	358	DUP	PASS	0/1	0/0	0/0	0/1;0/0;0/		ZN	IF682;.	0	NA	NA	NA	20036932	chr12 chr19	
9	22180603	22181065	463	DUP	PASS	0/1	0/0	0/0	0/1;0/0;0/		ZN	1F676.9 N	1b ¹	NA	NA	NA	22181065	chr19	
ə 4	137921311 24607446	137921977 24632214	667 24769	DUP DUP	PASS	0/1 0/1	0/0	0/0	0/1;0/0;0/0 0/1;0/0;0/0			MB,GZMH ; GZMH	15 0	NA NA	NA NA	NA	1,38E+08 24632214	chr9 chr14	CACNA1B GZMB,GZN
Ð	52887983	52915073	27091	DUP	PASS	0/1	0/0	0/0	0/1;0/0;0/	0 ZNF320,ZNFZN	F320,ZNF ZN	IF320,ZNF888 ; ZNF3	20, 25	NA	NA	NA	52915073	chr19	ZNF320,ZM
9	53433472	53470366	36895	DUP	PASS PASS	0/1 0/1	0/0 0/0	0/0	0/1;0/0;0/			M3P9,ZNF761,ZNF7		NA	NA	NA	53470366	chr19	HCD5 MIC
6 19	31409977 55761542	31505091 55771871	95115 10330	DUP DUP	PASS	0/1	0/0	0/0	0/1;0/0;0/0 0/1;0/0;0/0			CG26,HCP5,LINC0114 PL4A,RFPL4AL1 ; .	19,N 18 6	NA NA	NA NA	NA NA	31505091 55771871	chr6 chr19	HCP5,MIC RFPL4A
12	676187	1623474	947288	DUP	PASS	0/1	0/0	0/0	0/1;0/0;0/			C1,FBXL14,LINC0094		NA	NA	NA	1623473	chr12	FBXL14,RA WNK1
r5 r5	70019880 122476485	70894956 126842467	875077 4365983	DUP	PASS PASS	0/1 0/1	0/0	0/0	0/1;0/0;0/0 0/1;0/0;0/0			F2H2B,LOC441081,L DH7A1,CEP120,CSNI		NA NA	NA NA	NA	70894956 1,27E+08	chr5 chr5	SMA4,SMN2 CSNK1G3, ALDH7A1,CE
-5	750256	942006	02641	DUD	0455	0/1	0/0	0/0	0/1.0/0.0/	70111011 75 70	UUC110 70	UUC11 70UUC118 .	701 212	NIA	NIA	NIA	842042	ohrE	,

KU LEUVEN

82

Am J Hum Genet. 2011 Aug 12;89(2):295-301. doi: 10.1016/j.ajhg.2011.06.012. Epub 2011 Jul 28.

Characterization of a 8q21.11 microdeletion syndrome associated with i recognizable phenotype.

Palomares M¹, Delicado A, Mansilla E, de Torres ML, Vallespín E, Fernandez L, Martinez-Glez V, García-Miñaur S, Lynch SA, Sharkey FH, Thuresson AC, Annerén G, Belligni EF, Martínez-Fernández ML, Bermejo E, Nowakowska I Obersztyn E, Martínez-Frías ML, Hennekam RC, Lapunzina P.

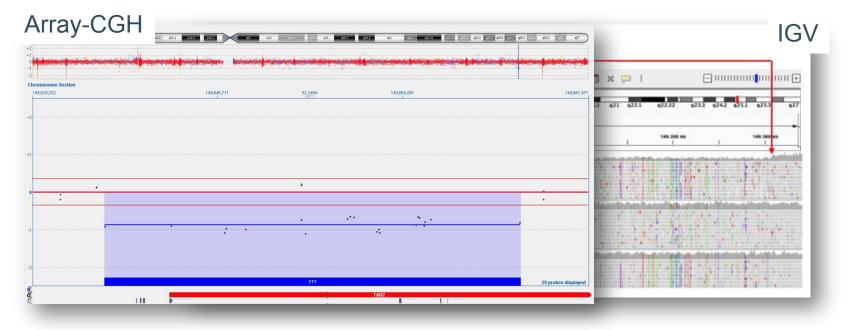
- Round face with full cheeks
- High forehead
- Ptosis
- Corneal opacities
- Wide nasal bridge ٠
- Underdeveloped alae
- Short philtrum •
- Cupid's bow of the upper lip
- Downturned corners of the mouth
- Micrognathia
- Low-set and prominent ears
- Short neck
- Camptodactyly •
- Syndactyly
- Broadening of the first rays ٠
- Hypotonia
- Impaired balance
- Sensorineural hearing loss ٠
- Underdeveloped corpus callosum
- Unusual behavior

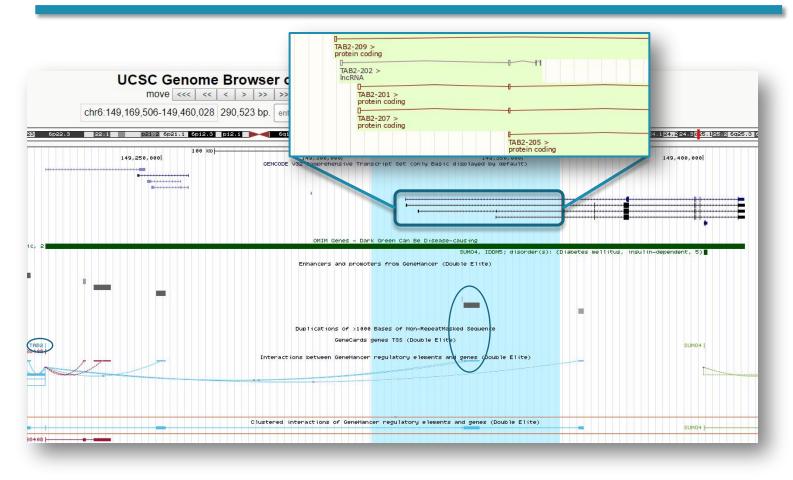
22 years old

- Non-consanguineous, healthy parents
- Ventricular septum defect
- Coarctation of the aorta
- Horseshoe kidney
- Bilateral choanal atresia
- Clinodactyly of the third and fourth finger
- · Bilateral sandal gap
- Short stature
- · Hyperextension of the knees and slumped shoulders
- Hypogenesis of the abdominal mesentery
- Mild intellectual disability
- Facial dysmorphism
 - Midfacial hypoplasia
 - Short palpebral fissures
 - High-arched palate
 - · Undersized maxilla resulting in a nasal speech
 - Ptosis of the upper eyelids
 - Smallmouth and ears
 - Horner's syndrome

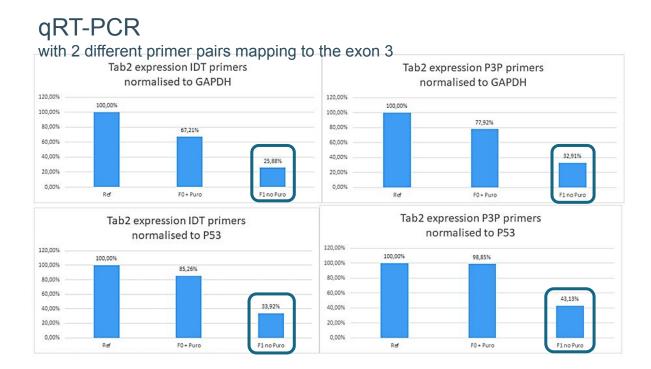
- CHD7 negative
- Array-CGH negative

SNVs Analysis:


Filtering criteria	Number of variants						
Total	6,912,472						
De novo variants	102,190						
Rare variants (MAF<1%)	69,071						
Exonic and splice-site variants	223						
CADD > 20	142						
Excluding synonymous variants	91						



CNVs Analysis:


- fold change under 0.7 and above 1.3
- good mappability
- de novo

deletion **chr6: 149,308,196 - 149,360,335** in *TAB2* gene

Gene expression

Whole Exome Sequencing, Familial Genomic Triangulation, and Systems Biology Converge to Identify a Novel Nonsense Mutation in *TAB2*-encoded TGF-beta Activated Kinase 1 in a Child with Polyvalvular Syndrome

Jaeger P. Ackerman, BA,* John A. Smestad, BS,[†] David J. Tester, BS,* Muhammad Y. Qureshi, MBBS,* Beau A. Crabb, MS, CGC,[‡] Nancy J. Mendelsohn, MD,[‡] and Michael J. Ackerman, MD, PhD*

> A recognizable systemic connective tissue disorder with polyvalvular heart dystrophy and dysmorphism associated with TAB2 mutations

> M. Ritelli¹ | S. Morlino² | E. Giacopuzzi¹ | L. Bernardini³ | B. Torres³ | G. Santoro¹ | V. Ravasio¹ | N. Chiarelli¹ | D. D'Angelantonio² | A. Novelli⁴ | P. Grammatico² | M. Colombi¹ | M. Castori⁵

A 2.6 Mb deletion of 6q24.3–25.1 in a patient with growth failure, cardiac septal defect, thin upper lip and asymmetric dysmorphic ears

R. Caselli ^a, M.A. Mencarelli ^a, F.T. Papa ^a, V. Uliana ^a,
S. Schiavone ^b, M. Strambi ^b, C. Pescucci ^a, F. Ariani ^a, V. Rossi ^c,
I. Longo ^a, I. Meloni ^a, A. Renieri ^{a,**}, F. Mari ^a

Familial *TAB2* Microdeletion and Congenital Heart Defects Including Unusual Valve Dysplasia and Tetralogy of Fallot

Karin Weiss,¹ Carolyn Applegate,² Tao Wang,^{2,3} and Denise A. S. Batista^{2,4,5}*

A De Novo 0.63 Mb 6q25.1 Deletion Associated with Growth Failure, Congenital Heart Defect, Underdeveloped Cerebellar Vermis, Abnormal Cutaneous Elasticity and Joint Laxity

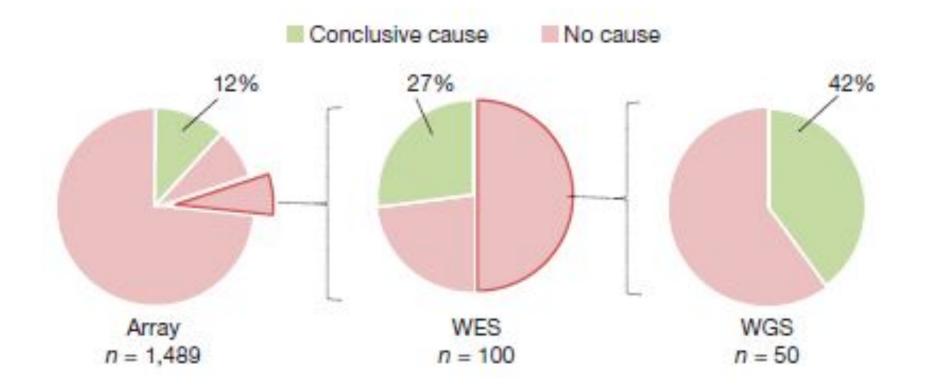
Vincenzo Salpietro,^{1,2}* Martino Ruggieri,³ Kshitij Mankad,⁴ Gabriella Di Rosa,⁵ Francesca Granata,⁶ Italia Loddo,² Emanuela Moschella,² Maria Pia Calabro,⁷ Anna Capalbo,⁸ Laura Bernardini,⁸ Antonio Novelli,⁹ Agata Polizzi,^{10,11} Daniela G. Seidler,¹² Teresa Arrigo,² and Silvana Briuglia²

Haploinsufficiency of *TAB2* Causes Congenital Heart Defects in Humans

Bernard Thienpont,^{1,14} Litu Zhang,^{2,15} Alex V. Postma,³ Jeroen Breckpot,¹ Léon-Charles Tranchevent,⁴ Peter Van Loo,^{5,6} Kjeld Møllgård,⁷ Niels Tommerup,² Iben Bache,² Zeynep Tümer,^{2,8} Klaartje van Engelen,⁹ Björn Menten,¹⁰ Geert Mortier,^{10,11} Darrel Waggoner,¹² Marc Gewillig,¹³ Yves Moreau,⁴ Koen Devriendt,¹ and Lars Allan Larsen^{2,*}

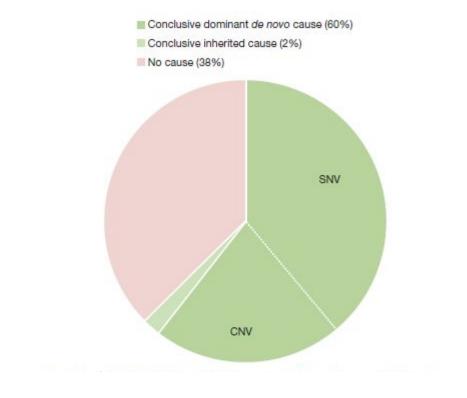
6q25.1 (TAB2) microdeletion syndrome: Congenital heart defects and cardiomyopathy

Andrew Cheng¹ | Mary Beth P. Dinulos² | Whitney Neufeld-Kaiser³ | Jill Rosenfeld⁴ | McKenna Kyriss⁵ | Suneeta Madan-Khetarpal⁶ | Hiba Risheg⁷ Peter H. Byers³ | Yajuan J. Liu³


- Growth failure
- Joint laxity
- Hypotonia
- Connective tissue abnormalities
- Developmental or intellectual disability
- Horseshoe kidney
- Bilateral choanal atres
 - pgenesis of the at

tres e at

Analysis of the complete genome (SNPs + CNVs)


Genome sequencing identifies major causes of severe intellectual disability

Christian Gillssen¹*, Jayne Y. Hehir-Kwa¹*, Dije Tjwan Thung¹, Maartje van de Vorst¹, Bregje W. M. van Bon¹, Marjolen H. Willemsen¹, Michael Kwim¹, Irene M. Janssen¹, Alexander Hoischen¹, An zette Schende¹, Richard I rach². Robert Klein², Rick Tearle², Tanlo ²¹, Bolph Pfmidt¹, Helger G. Yntema¹, Bert B. A. de Vr es. 7 Ji slig Livié trai¹, Page G. Biwm wi^{1,4*}, Lisenka E. L. M. Vissers^{1*} & Joris A. Velman^{1,4*}.

KU LEUVEN

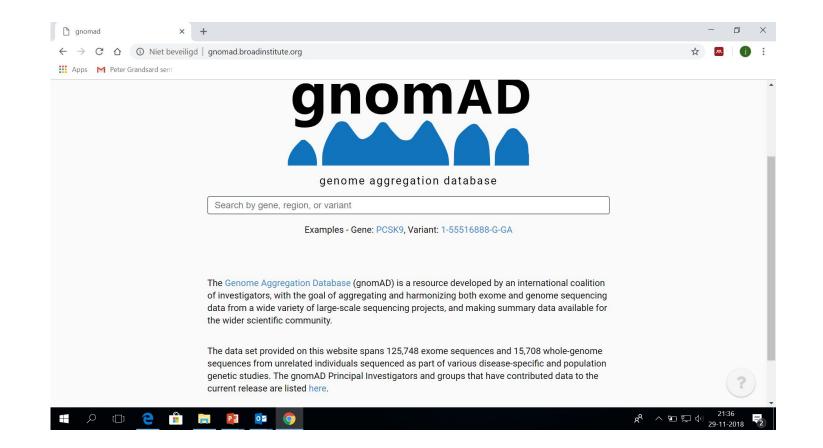
versity

Analysis of the complete genome

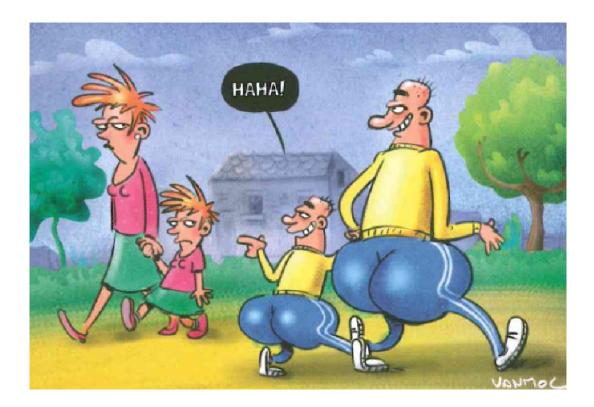
Diagnostic yield: 62%

Genome sequencing identifies major causes of severe intellectual disability

Christian Gilissen¹⁴, Jayne Y. Hehir-Kwa¹⁴, Dje Tjwan Thung¹, Maartje van de Vorst¹, Bregle W. M. van Bon¹, Marjolein H. Willemson¹, Michael Kwint¹, Irene M. Janssen¹, Alexandæ Hoischen¹, An ætte Schene^{1,1}, Pichard Legech², Robert Klein², Rick Tearle², TanBo^{1,3}, Rolph Pfhndt¹, Heiger G. Yntema¹, Bert B. A. de Vr es , Tjr Siz F + x & tra¹, Pice C. Jiron x u^{1,4}*, Lisenka E. L. M. Vissen⁴* & Joris A. Velman^{4*}


The burden of autosomal recessive diseases in rare developmental disorders

• DDD study


- 3.6% autosomal recessive
- 40% de novo coding mutations
- Pakistani study:
 - 30.9% autosomal recessive
 - 30% de novo dominant

gnomAD (past Exac) database

exercise

We are all mutants!

