

PGT for chromosomal abnormalities.

Pieter Verdyck, PhD. BeSHG course 2023 - 2024

Outline

- PGT-A vs PGT-SR
- Segregations of translocations
- Technologies
 - → FISH
 - → Array CGH
 - → Shallow Whole Genome Sequencing
 - → SNP array
 - → Genotyping by sequencing

Outline

- PGT-A vs PGT-SR
- Segregations of translocations
- Technologies
 - → FISH
 - → Array CGH
 - → Shallow Whole Genome Sequencing
 - → SNP array
 - → Genotyping by sequencing

Nomenclature

- PGT= Preimplantation Genetic Testing
- PGT-A = PGT for <u>A</u>neuploidy
- PGT-SR = PGT for <u>Structural</u> <u>Rearrangements</u>

 Derivative chromosome = structurally abnormal chr

PGT-A: indications

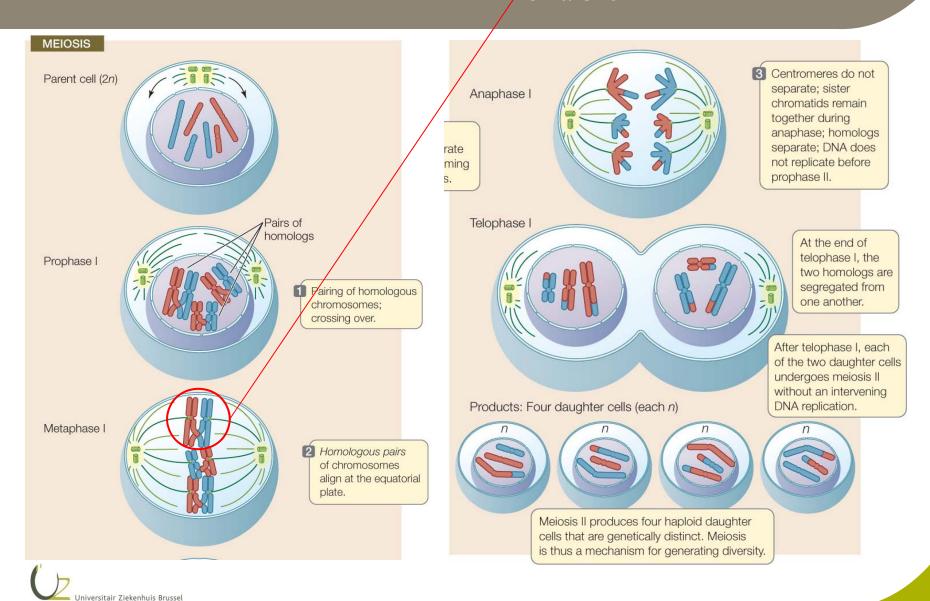
- Former PGS (screening)
 - → Couple has a normal karyotype
 - Recurrent implantation failure
 - Recurrent miscarriage
 - Advanced maternal age
 - Antecedents trisomy
 - Severe oligo-astheno-teratozoospermia (OAT)
- Numerical abnormalities (rare indication).
 - → 47,XXX; 47,XXY, 47,XYY
 - → Mosaic 45,X/46,XX
 - → Germline mosaic

PGT-SR: indications

- Balanced structural rearrangements
 - → Reciprocal and Robertsonian translocations
 - → Paracentric and pericentric inversions
 - → Insertions (rare indication)
- Unbalanced structural rearrangements
 - → Deletions, duplications
 - → Unbalanced reciprocal translocations (rare indication)

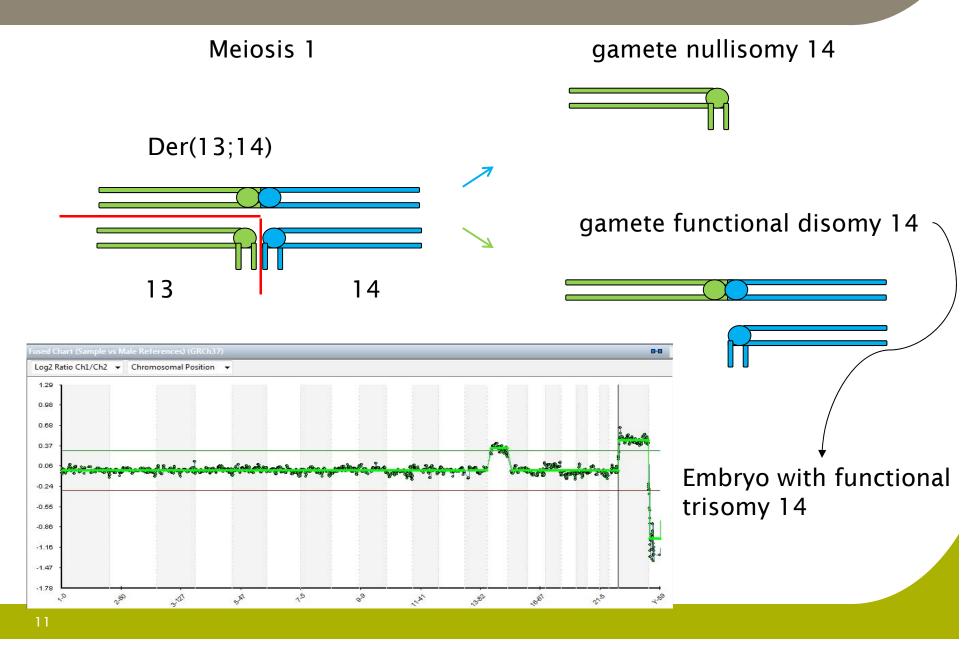
Outline

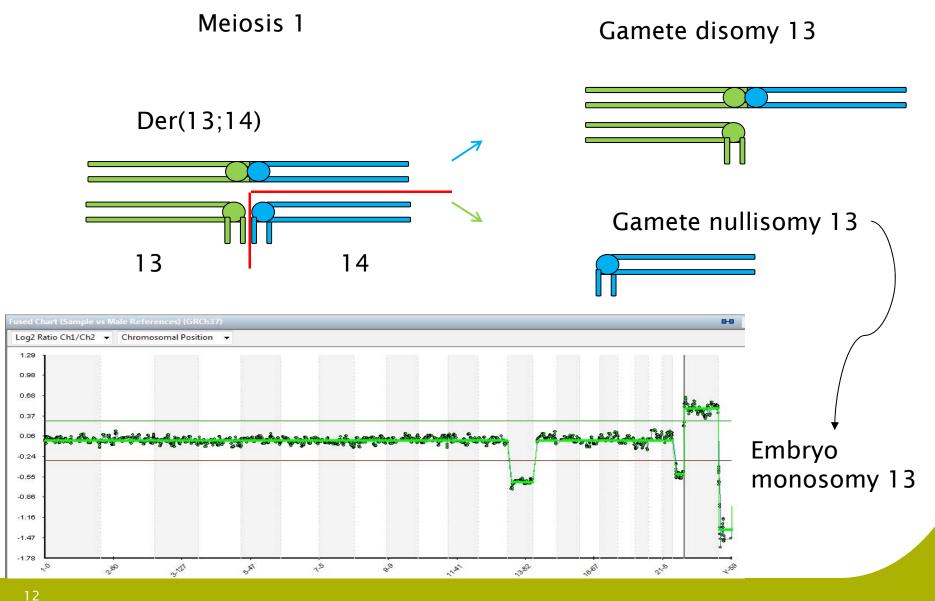
- PGT-A vs PGT-SR
- Segregations of translocations
 - → Robertsonian translocations
 - → Reciprocal translocations
- Technologies
 - \rightarrow FISH
 - → Array CGH
 - → Shallow Whole Genome Sequencing
 - → SNP array
 - → Genotyping by sequencing


Robertsonian translocation

- Example 45,XX,der(13;14)(q10;q10)
- Robersonian translocation
 - → Fusion of long arms of 2 acrocentric chromosomes: 13, 14, 15, 21, 22
 - → Most often dicentric
 - \rightarrow der(13;14) most frequent (75%)
 - → Viable trisomies possible with Rob involving chromosomes 13 and 21. Highest risk for trisomy 21 pregnancy in female carriers (10-15%)
 - \rightarrow Higher incidence of UPD (chr14 and 15), ~0,8%
 - → 6 segregation products are expected

Normal meiosis


bivalent


Segregations Rob - alternate

Segregations Rob - adjacent

Segregations Rob - adjacent

Outline

- PGT-A vs PGT-SR
- Segregations of translocations
 - → Robertsonian translocations
 - → Reciprocal translocations
- Technologies
 - \rightarrow FISH
 - → Array CGH
 - → Shallow Whole Genome Sequencing
 - → SNP array
 - → Genotyping by sequencing

Reciprocal translocation

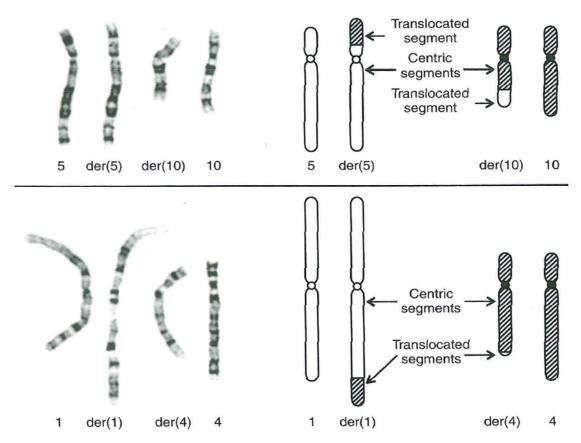


FIGURE 5-1 Reciprocal translocations demonstrating (*above*) double-segment and (*below*) single-segment exchange. The translocations are t(5;10)(p13;q23.3) and t(1;4)(q44;q31.3). (Cases of M. A. Leversha and N. A. Adams.)

Universitair Ziekenhuis Brussel

Reciprocal translocation

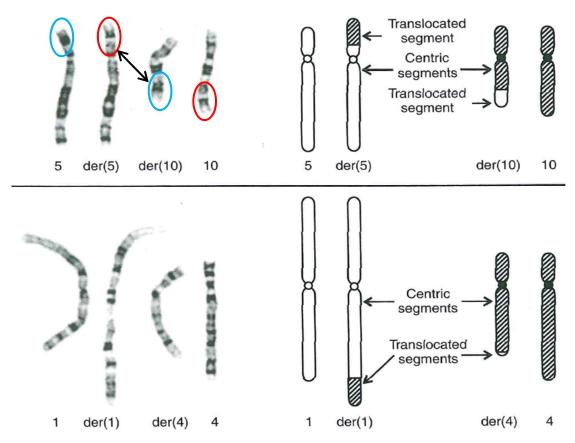
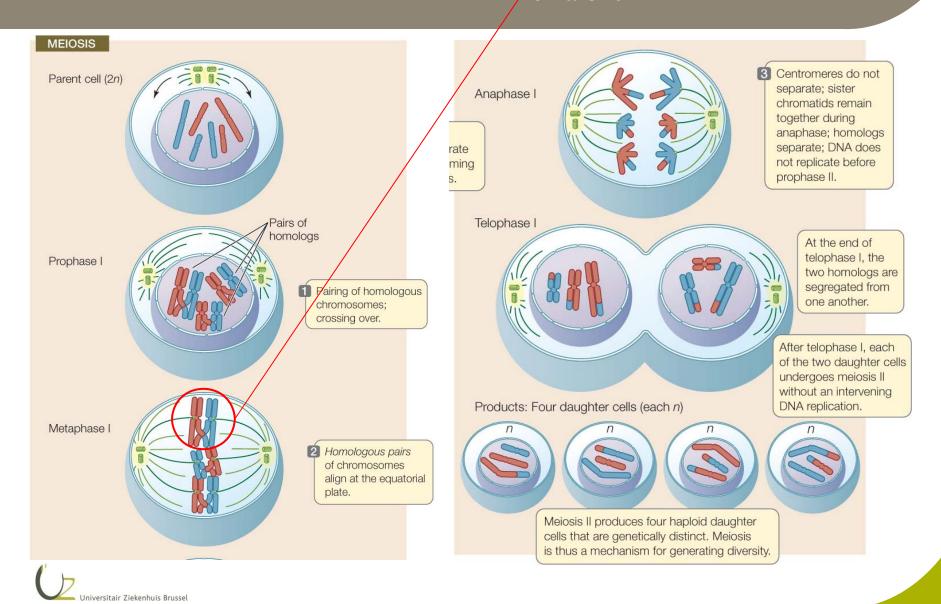



FIGURE 5-1 Reciprocal translocations demonstrating (*above*) double-segment and (*below*) single-segment exchange. The translocations are t(5;10)(p13;q23.3) and t(1;4)(q44;q31.3). (Cases of M. A. Leversha and N. A. Adams.)

Universitair Ziekenhuis Brussel

Normal meiosis

bivalent

Tetravalent

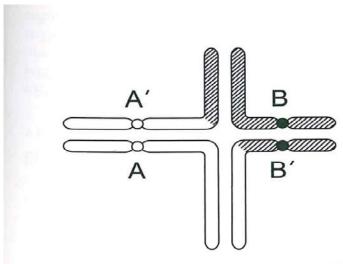


FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYT WITH:	SEGREGATION MODE E
2:2 Segregations		
A and B	A' and B'	Alternate segregation
A and B'	B and A'	Adjacent-1 segregation
A and A'	B and B'	Adjacent-2 segregation
3:1 Segregations		
A B A'	B'	3:1 segregation with
A B and B'	A'	tertiary trisomy or monosomy
A' B' and A	В	3:1 segregation with
A' B' and B	A	interchange trisomy or monosomy
4:0 Segregation		•
ABA'B'	None	4:0 segregation with double trisomy or
		monosomy

Tetravalent

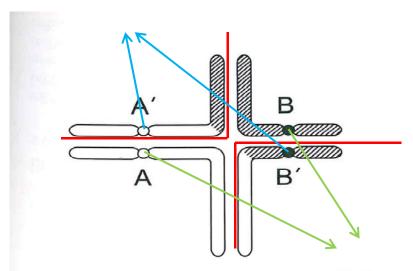


FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

	WITH:	
WITH:	GAMETOCYTE	
GAMETOCYTE	DAUGHTER	MODE
ONE DAUGHTER	OTHER	SEGREGATION

	2:2	Segrega	tion
--	-----	---------	------

A and B	A' and B'	Alternate
		segregation
A and B'	B and A'	Adjacent-1
		segregation
A and A'	B and B'	Adjacent-2
		segregation
3:1 Segregations		
ABA'	B'	3:1 segregation with
A B and B'	A'	tertiary trisomy or monosomy
A' B' and A	В	3:1 segregation with
A' B' and B	A	interchange
		trisomy or
		monosomy
4:0 Segregation		
ABA'B'	None	4:0 segregation
		with double
		trisomy or
		monosomy

Tetravalent

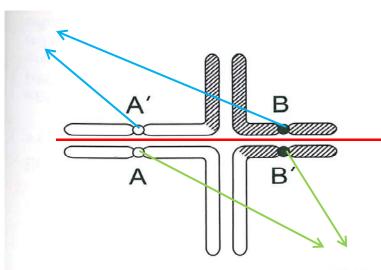


FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

14510 5 1.		
ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYT WITH:	SEGREGATION MODE E
2:2 Segregations		
A and B	A' and B'	Alternate segregation
A and B'	B and A'	Adjacent-1 segregation
A and A'	B and B'	Adjacent-2 segregation
3:1 Segregations		
A B A'	B'	3:1 segregation with
A B and B'	A'	tertiary trisomy or monosomy
A' B' and A	В	3:1 segregation with
A' B' and B	A	interchange trisomy or monosomy
4:0 Segregation		
ABA'B'	None	4:0 segregation with double trisomy or monosomy

Tetravalent

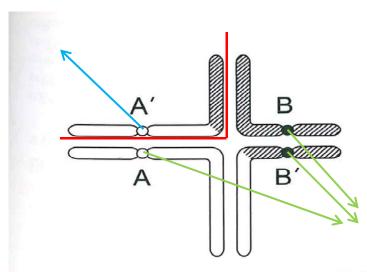


FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYT WITH:	SEGREGATION MODE E
2:2 Segregations		
A and B	A' and B'	Alternate segregation
A and B'	B and A'	Adjacent-1 segregation
A and A'	\boldsymbol{B} and \boldsymbol{B}'	Adjacent-2 segregation
3:1 Segregations		segregation
ABA'	B'	3:1 segregation with
A B and B'	A'	tertiary trisomy or monosomy
A' B' and A	В	3:1 segregation with
A' B' and B	A	interchange trisomy or monosomy
4:0 Segregation		,
ABA'B'	None	4:0 segregation with double
		trisomy or monosomy

Tetravalent

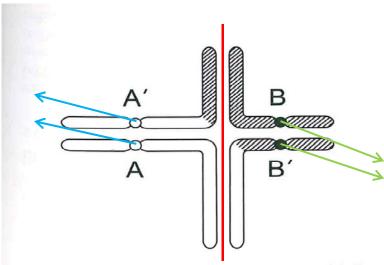
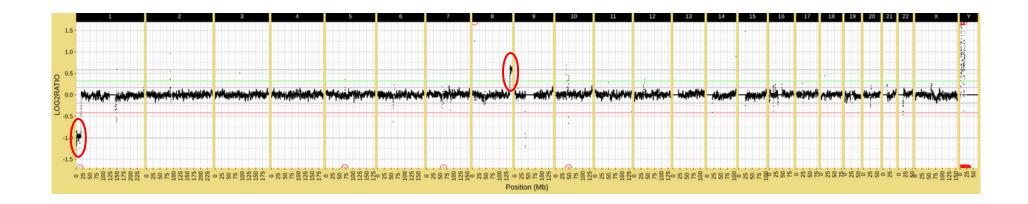


FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

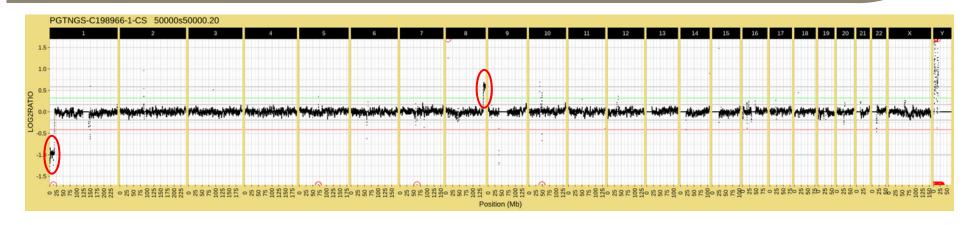
From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

personal constant		
ONE DAUGHTER	OTHER	SEGREGATION
GAMETOCYTE	DAUGHTER	MODE
WITH:	GAMETOCYT	E
	WITH:	
2:2 Segregations		
A and B	A' and B'	Alternate
		segregation
A and B'	B and A'	Adjacent-1
		segregation
A and A'	B and B'	Adjacent-2
		segregation
3:1 Segregations		
A B A'	\mathbf{B}'	3:1 segregation
	_	with
A B and B'	A'	tertiary trisomy
A D and D	11	or monosomy
A' B' and A	В	3:1 segregation
A D and A	Ь	with
A' B' and B	Α	interchange
A b and b	Λ	trisomy or
0.00		monosomy
4:0 Segregation		
ABA'B'	None	4:0 segregation
		with double
		trisomy or
		monosomy

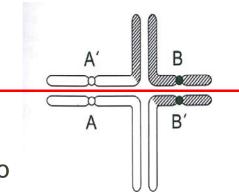
Reciprocal translocations

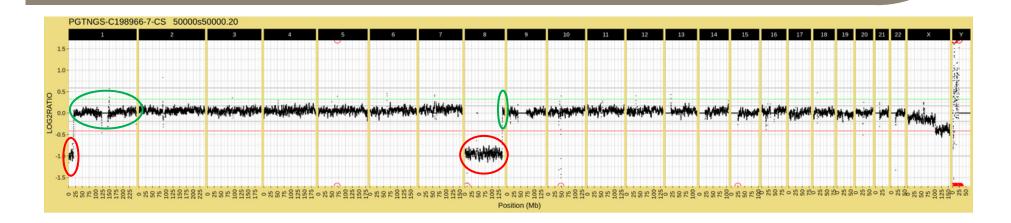

• Rule of thumb:

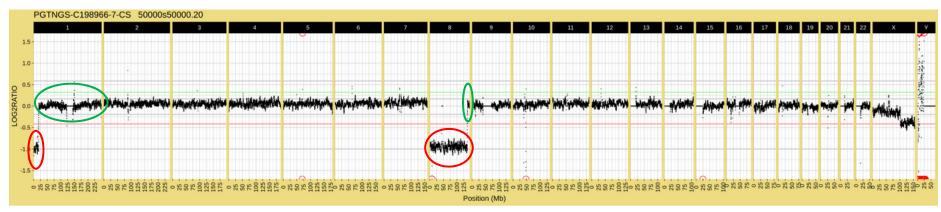
Sum of the copynumber of the centric segments


Sum of the copynumber of the translocated segments

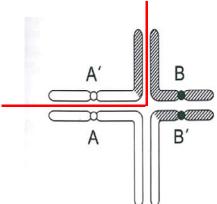
->If you know the CN of 3 out of 4 segments, you know what the CN of the 4th segment should be




- ->Adjacent 1 segregation in gamete
 - 1 derivative maternal chromosome 1 (A')
 - 1 normal maternal chromosome 8 (B)


- -> translocated segment on chr1 deleted in embryo
 - $-> Log_2R = -1$
- -> translocated segment on chr 8 duplicated in embryo

$$-> Log_2R = 0.58$$

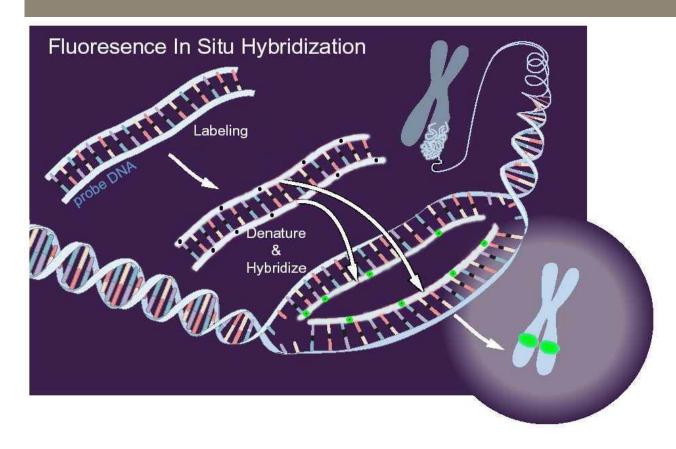


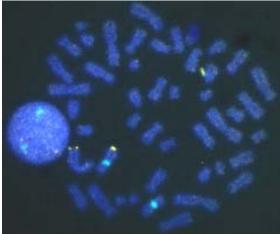
-> Tertiairy monosomy in embryo

1 maternal derivative chromosome 1 (A')
no maternal chromosome 8 (/)

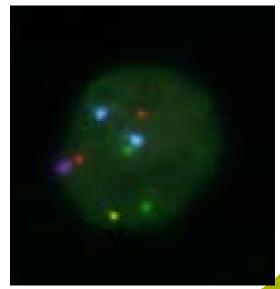
Outline

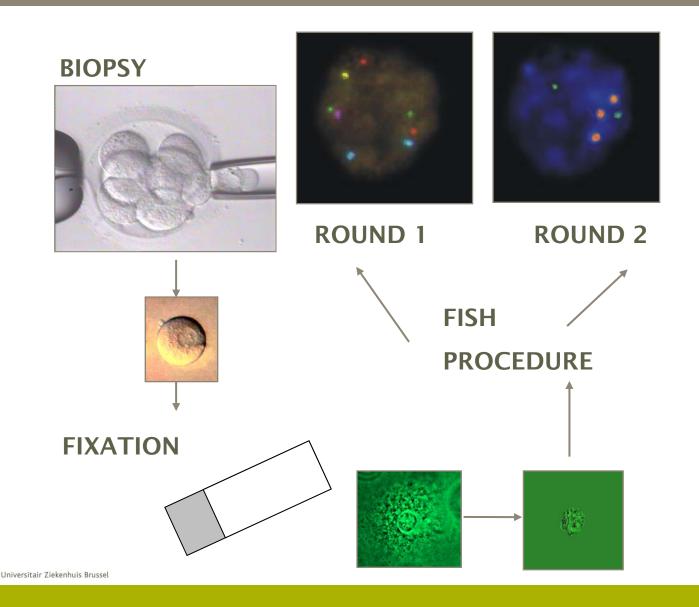
- PGT-A vs PGT-SR
- Segregations of translocations
- Technologies
 - → FISH
 - → Array CGH
 - → Shallow Whole Genome Sequencing
 - → SNP array
 - → Genotyping by sequencing




PGT with FISH

- -Fluorescent *In-situ* Hybridization: hybridization of fluorescently labelled probes directly onto a fixed nucleus.
- -One to three FISH hybridization rounds are possible (wash and hybridize again)
- -Up to ~12 probes
- -Oldest technique for chromosomal PGT


FISH:principle

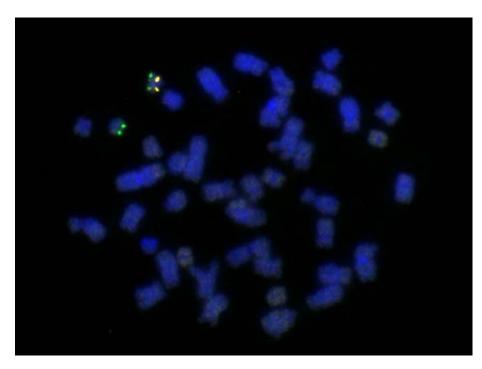


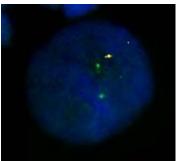
Multi - color FISH $1 \rightarrow 3$ consecutive FISH procedures

PGD- FISH cycle: day 3 biopsy

Example FISH - 46,XX,del(22)(q11.21q11.21)

Workup

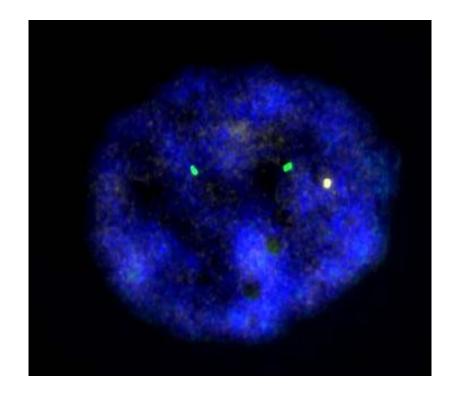

- → 10 Metaphase nuclei
- → 100 Interphase nuclei


Round 1:

22q11.2 probe (Vysis, LSI TUPLE 1, Orange) 22q13.3 probe (Vysis, LSI ARSA, Green)

Round 2 (not shown):

PGT-kit 13q14 Red 18p11.1-q11.1 Alpha Satellite DNA Aqua 21q22.13-21q22.2 Green Xp11.1-q11.1 Alpha Satellite DNA Blue Yp11.1-q11.1 Alpha Satellite DNA Gold



Example FISH - 46,XX,del(22)(q11.21q11.21)

PGD

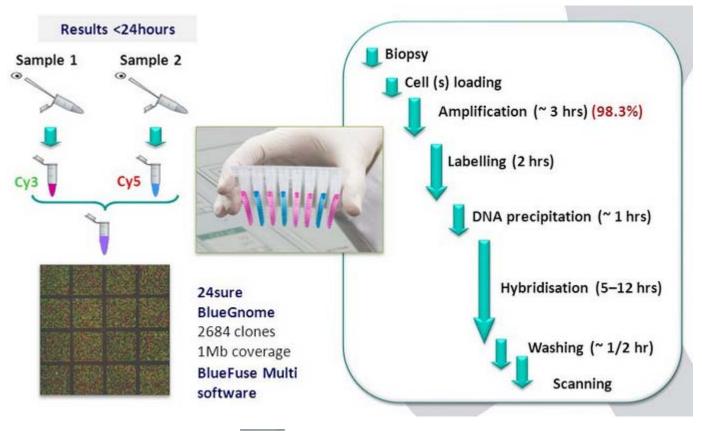
→ Embryo inherited del(22)(q11.21q11.21)

Strengths and limitations of FISH

Strengths:

- → Structural rearrangements with small unbalanced segments can be diagnosed.
- → Haploidy and polyploidy can be detected

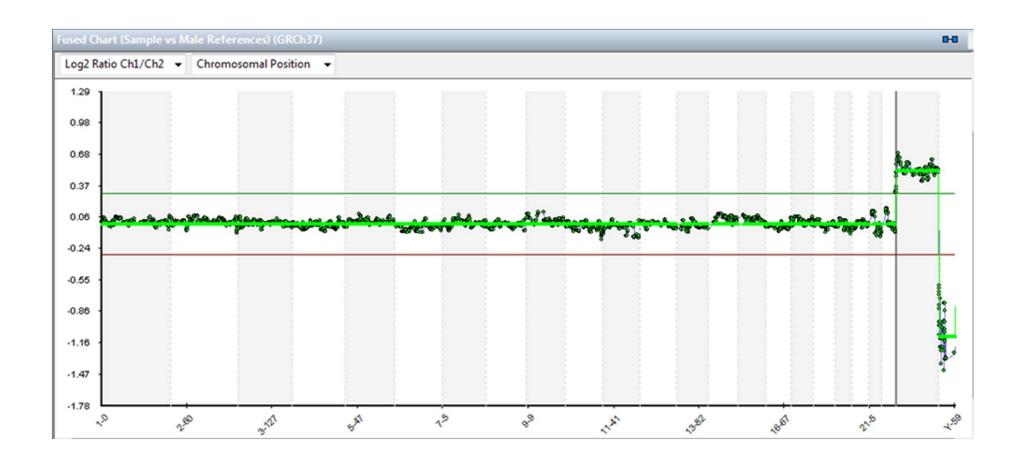
• Limitations:


- → Often patient-specific workup required
- → Often subjective interpretation (low signal to background). Frequent FISH errors (splitting or overlapping signals)
- → Few chromosomes are tested (probemix)
- → Uniparental disomy (UPD) is not detected.
- → Not useful for duplications
- → Normal and balanced segregations are not distinguishable

Outline

- PGT-A vs PGT-SR
- Technologies
 - → FISH
 - → Array CGH
 - → Shallow Whole Genome Sequencing
 - → SNP array
 - → Genotyping by sequencing
- Segregations of translocations

Array CGH



If is sample 2 is normal reference In Cy5 (red)

- \rightarrow Deletion sample 1; theoretical log2R = -1
 - \rightarrow Duplication sample 1; theoretic log2R = 0,58
 - \rightarrow Normal sample 1; theoretical log2R = 0

Example 46,XX

Strengths and limitations of aCGH

Strengths:

- → No patient-specific workup required
- → All chromosomes are tested
- → Straightforward interpretation

• Limitations:

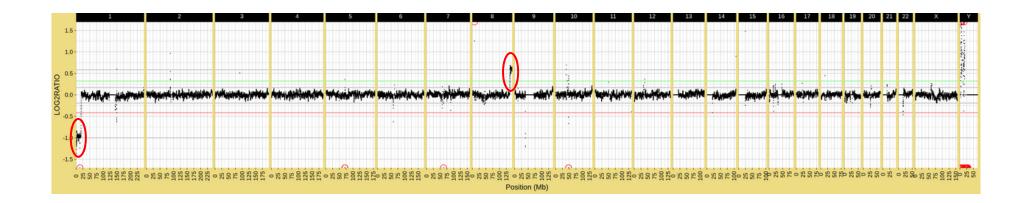
- → Uniparental disomy (UPD) is not detected.
- → Normal and balanced segregations are not distinguishable
- → Structural rearrangements with small exchanged segments (<10 Mb) cannot be diagnosed.</p>
- → Haploidy and polyploidy cannot be detected
- → Main supplier abruptly ceased production in 2018

Outline

- PGT-A vs PGT-SR
- Segregations of translocations
- Technologies
 - → FISH
 - → Array CGH
 - → Shallow Whole Genome Sequencing
 - → SNP array
 - → Genotyping by sequencing

Shallow Whole Genome Sequencing

- A.k.a. low pass sequencing, low coverage NGS,...
- Massive parallel sequencing with low sequencing depth. Typically <0,3X or <10⁷ reads.
- The number of reads is counted between specified intervals; "bins" (e.g. 1Mb) and normalized (GC content).
- The number of reads is a measure for the number of copies present


PGT - Shallow Whole Genome Seq

Our method

- → Trophectoderm biopsy
- → Whole genome amplification (Sureplex Illumina)
- → Bead cleanup
- → Library preparation (adding adaptors for sequencing) using KAPA HyperPlus (Roche)
- → Sequencing on NovaSeq (Illumina)
- → Data analysis

Rec. Transloc 46,XX,t(1;8)(p36,13;q24,23)

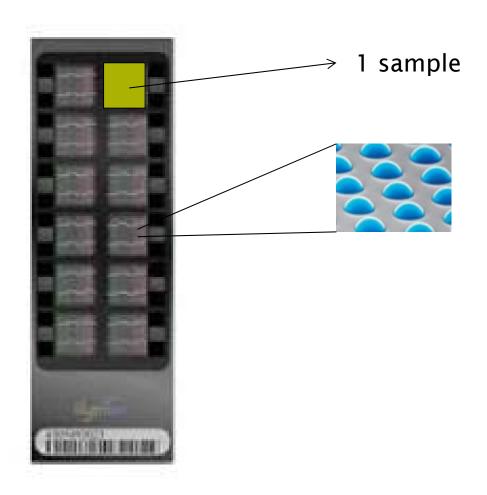
Strengths and limitations of sWGS

Strengths:

- → No patient-specific workup required
- → All chromosomes are tested
- → Straightforward interpretation
- → Method of choice for copy-number detection (PGT-A).

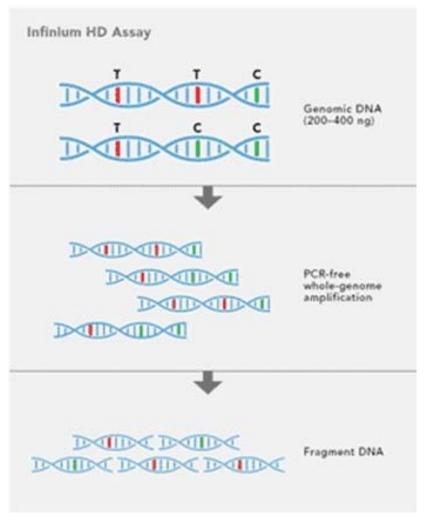
• Limitations:

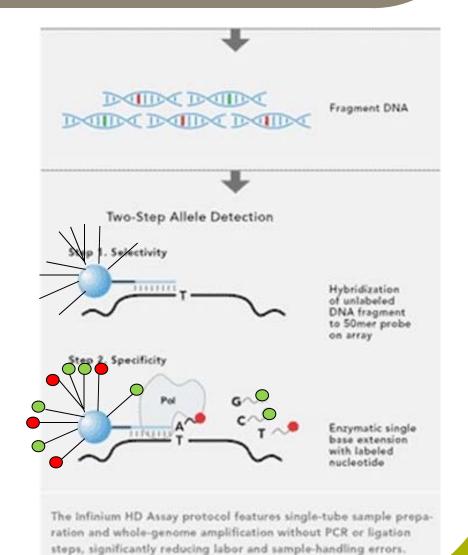
- → Uniparental disomy (UPD) is not detected.
- → Normal and balanced segregations are not distinguishable
- → Structural rearrangements with small exchanged segments (<5 Mb) cannot be diagnosed.</p>
- → Haploidy and polyploidy cannot be detected

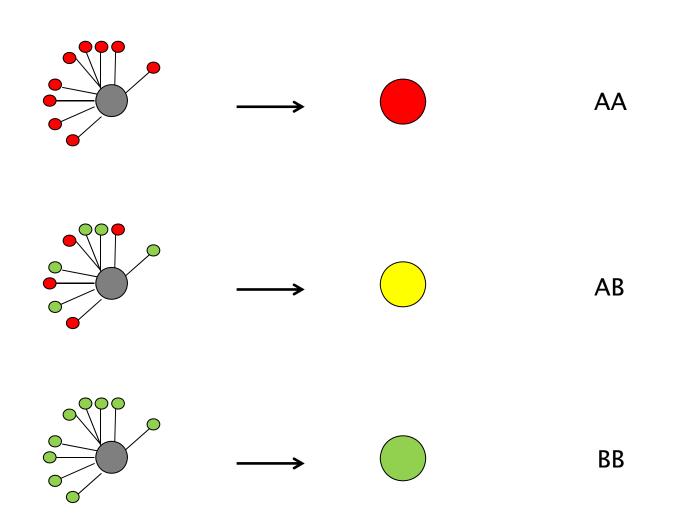


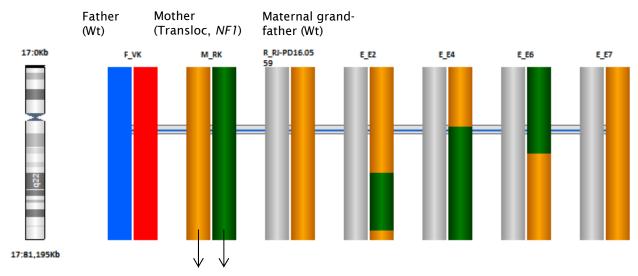
Outline

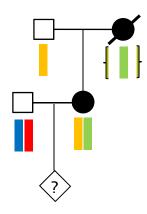
- PGT-A vs PGT-SR
- Segregations of translocations
- Technologies
 - → FISH
 - → Array CGH
 - → Shallow Whole Genome Sequencing
 - → SNP array
 - → Genotyping by sequencing



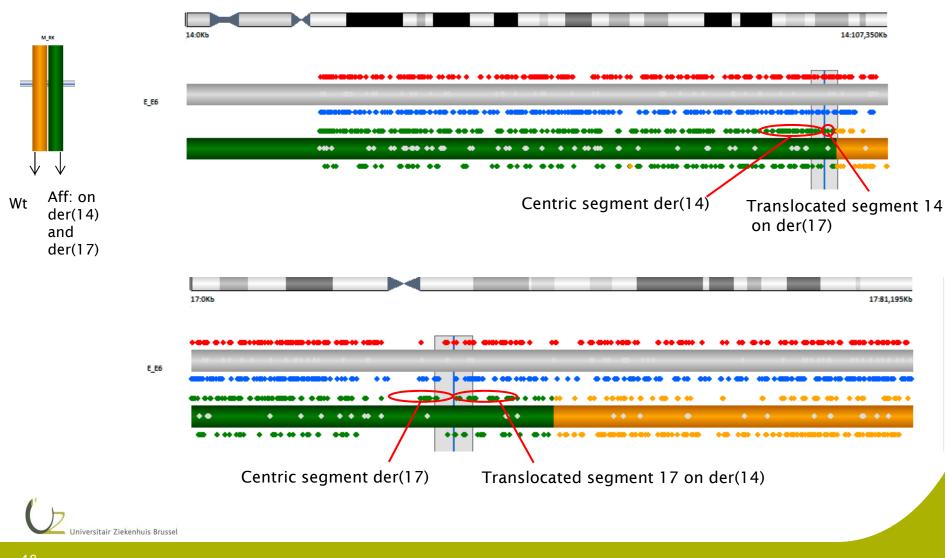

SNP array - Illumina Karyomapping


SNP array - method

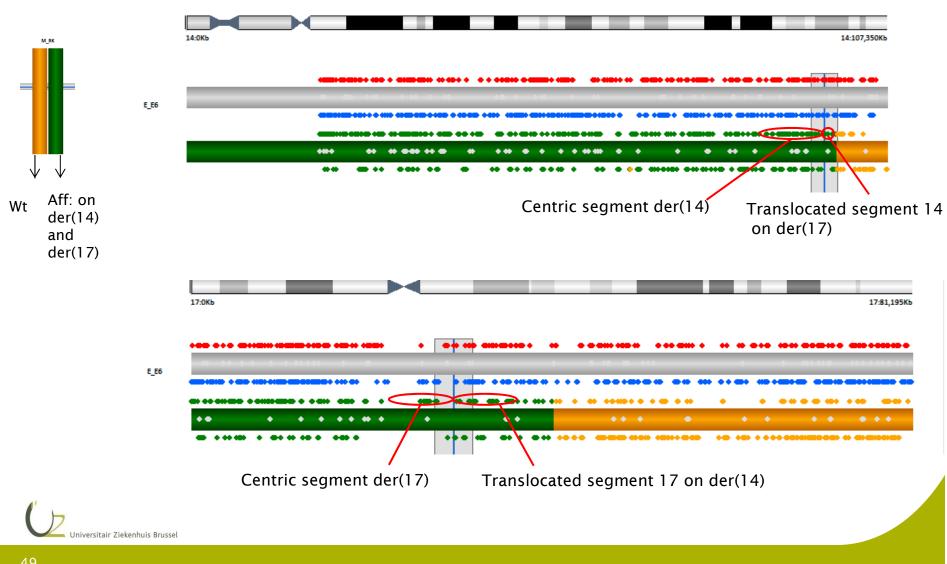



From signal to genotype

SNP array – example 46,XX,t(14;17)



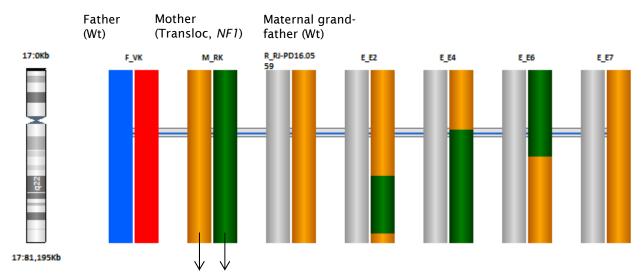
Wt Aff (on derivatives)



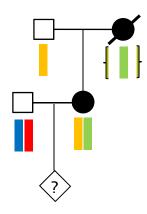
SNP array - example

SNP array - Balanced t(14;17) carrier

Strengths and limitations of SNPa

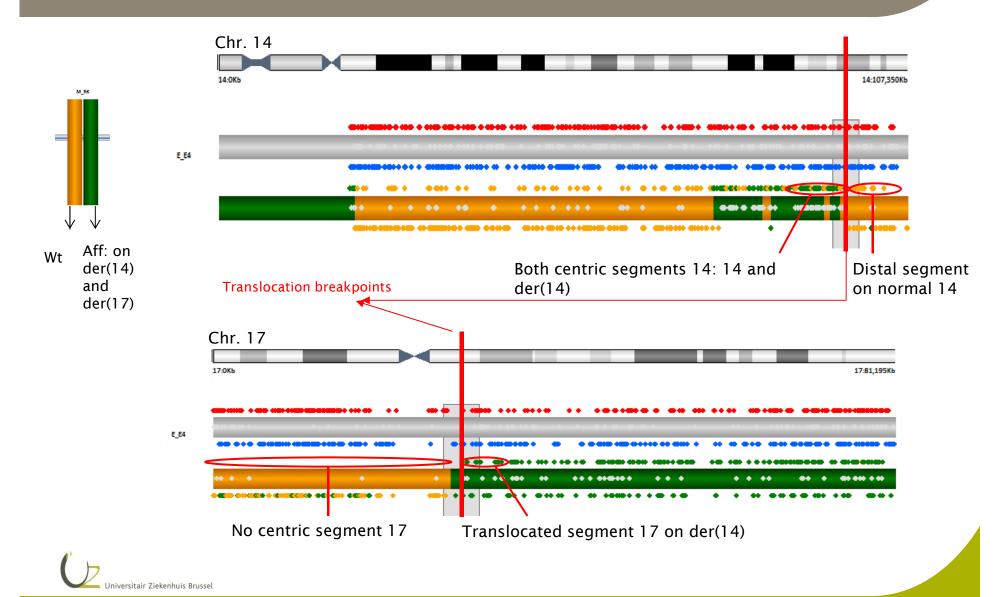

Strengths:

- → Uniparental disomy (UPD) can be detected.
- → Normal and balanced segregations can be distinguished
- → <u>Inherited</u> structural rearrangements with small exchanged segments (<5 Mb) can be diagnosed.</p>
- → Haploidy and polyploidy can be detected
- → All chromosomes are tested
- → Detection of PGT-SR can be combined with PGT-M or A

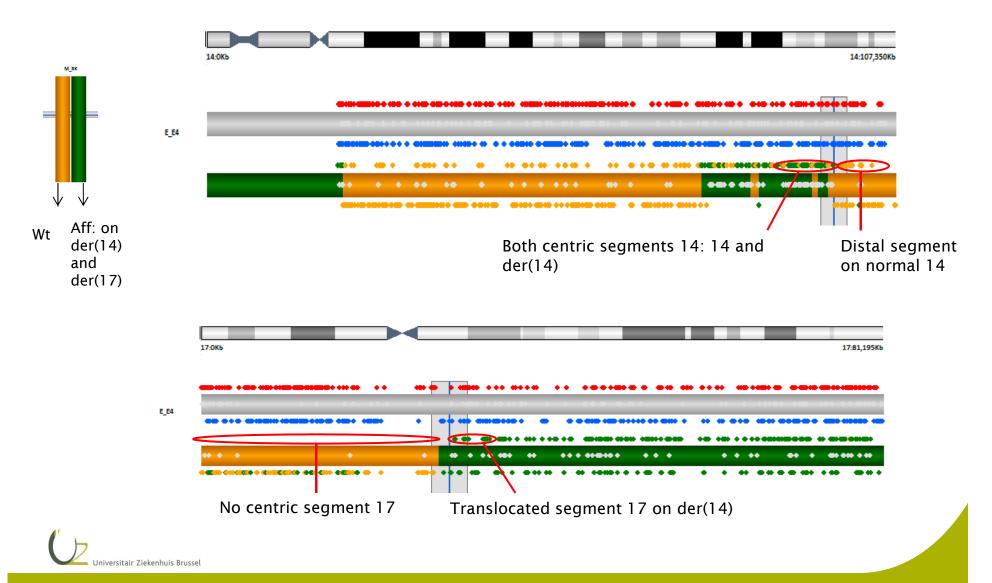

• Limitations:

- → Workup is required. DNA samples from family members is required.
- → Sensitivity for detection of de novo duplications and trisomies depends on the quality of the array data and the platform used

SNP array – example 46,XX,t(14;17)



Wt Aff (on derivatives)



SNP array - Example

SNP array - Unbalanced

Segregations for a reciprocal transloc.

Tetravalent

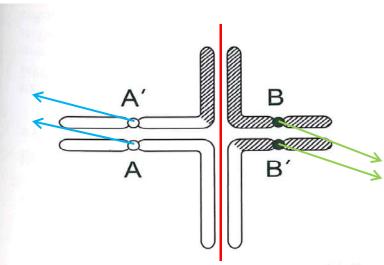


FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

Table 5-1.

ONE DAUGHTER	OTHER	SEGREGATION	
GAMETOCYTE	DAUGHTER	MODE	
WITH:	GAMETOCYTE		
	WITH:		
2:2 Segregations			
A and B	A' and B'	Alternate	
		segregation	
A and B'	B and A'	Adjacent-1	
		segregation	
A and A'	B and B'	Adjacent-2	
		segregation	
3:1 Segregations			
ABA'	\mathbf{B}'	3:1 segregation	
	_	with	
A B and B'	A'	tertiary trisomy	
A D alid D	11	or monosomy	
A' B' and A	В	3:1 segregation	
A D allu A	Ь	with	
A' B' and B	Α	interchange	
A b and b	Λ	trisomy or	
0.00		monosomy	
4:0 Segregation			
ABA'B'	None	4:0 segregation	
		with double	
		trisomy or	
		monosomy	

Segregations for a reciprocal transloc.

Tetravalent

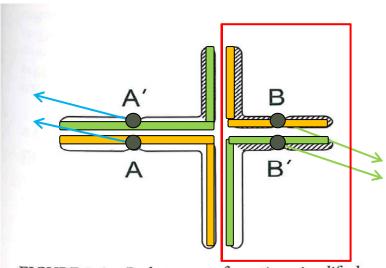
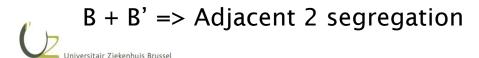
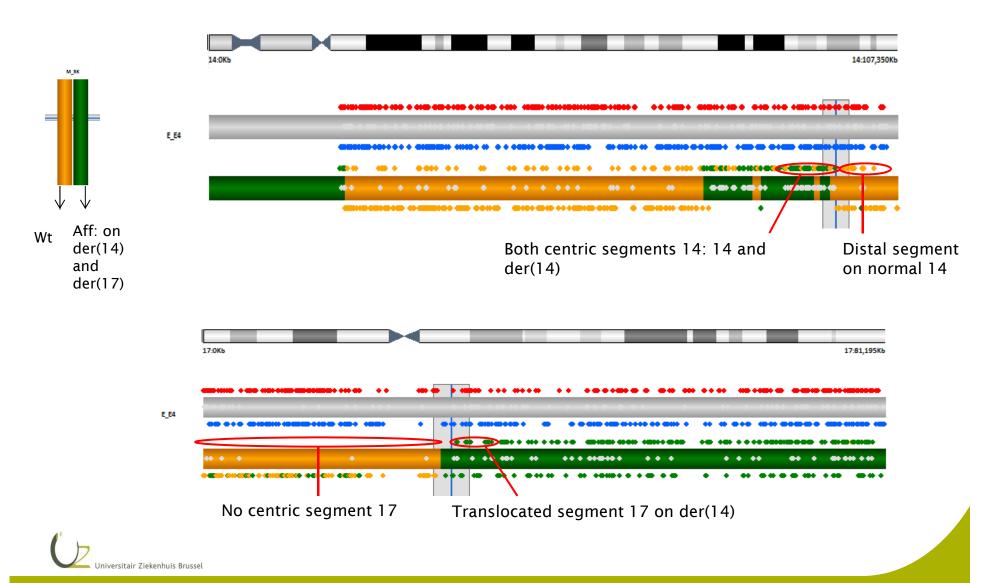


FIGURE 5–2 Pachytene configuration, simplified outline. The two normal (A, B) and the two translocation (A', B') homologs align corresponding segments of chromatin during meiosis I.

From Gardner and Amor, 'Chromosome abnormalities and genetic counseling' 5th edition, Oxford University press 2018.

Table 5-1.


ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYT WITH:	SEGREGATION MODE E
2:2 Segregations		
A and B	A' and B'	Alternate
A and B'	B and A'	segregation Adjacent-1
A and A'	B and B'	segregation Adjacent-2
3:1 Segregations		segregation
A B A'	B'	3:1 segregation with
A B and B'	A'	tertiary trisomy
A' B' and A	В	3:1 segregation with
A' B' and B	A	interchange trisomy or monosomy
4:0 Segregation		monosomy
ABA'B'	None	4:0 segregation with double trisomy or monosomy


Segregations for a reciprocal transloc.

-> Align with genome Chr type A Chr type B reference Haplotype 1 (normal) present Haplotype 2 (deriv) Translocated A Translocated B Centric A Centric B visualisation

In software

SNP array - Unbalanced

Outline

- PGS vs PGD, PGT-A vs PGT-SR
- Technologies
 - → FISH
 - → Array CGH
 - → Shallow Whole Genome Sequencing
 - → SNP array
 - → Genotyping by sequencing
- Segregations of translocations

Genotyping by sequencing

- High coverage sequencing allows to determine genotypes
- Cost can be reduced by sequencing only part of the genome
 - → Exome sequencing
 - → Reduced representation sequencing
- Similar data compared to SNP array
- Sequencing cost has been limiting use to date

