

Prenatal cytogenetic diagnosis : laboratory aspects

Presentation by Ann Van Den Bogaert, PhD Adapted by Annelies Fieuw, PhD Centre of Medical Genetics

Universitair Ziekenhuis Brusse

Vrije Universiteit Brussel

Outline

- Goal
- Sampling
- Analysis techniques
- Interpretation and reporting
- Mosaicism in prenatal diagnosis

Outline

• Goal

- Sampling
- Analysis techniques
- Interpretation and reporting
- Mosaicism in prenatal diagnosis

Goal of prenatal diagnosis

To inform couples about the risk of a birth defect or genetic disorder in their pregnancy

To provide them with informed choices on how to manage that risk (genetic counseling) Known family history \rightarrow elevated risk for a specific genetic disorder

Ultrasound abnormalities

Advanced maternal age

Incidence Down syndrome (trisomy 21) ~ maternal age

Ν

V

A S

Ε

Ν

0

Girirajan, 2009

Outline

Sampling

- Analysis techniques
- Interpretation and reporting
- Mosaicism in prenatal diagnosis

Chorionic villus sampling

Amniocentesis

Cordocentesis: after 20th week of gestation
→ fetal blood

Preimplantation genetic diagnosis

→ other presentation

 Chorionic villus sampling (CVS) : From 11 - 12th week of pregnancy

Amniocentesis :
From 14 - 16th week of pregnancy

in our laboratory

Vrije Universiteit Bruss

Van Opstael et al., 2016

Universitair Ziekenhuis Brussel

Chorionic villus sampling (CVS)

Vrije Universiteit Brussel

Prenatal culture - CVS

Microscopic dissection chorionic villi

1 villi (uncultured): array CGH + MCC/rapid aneuploidy (QF-PCR) – *trophoblast origin*

1 villi: if necessary for DNA/stock

1 villi: (short term culture, overnight) for FISH – *trophoblast origin*

+ back-up culture (long-term, > 1 week) -

mesenchymal origin

Van Opstael et al., 2016

Universitair Ziekenhuis Brussel

Prenatal culture - AC

1 tube (10 ml): array CGH + MCC/rapid aneuploidy (QF-PCR)

1 tube: if necessary for DNA/stock (2 ml) or if necessary for FISH (3 ml) + back-up culture

pellet

Washing

Van Opstael et al., 2016

Universitair Ziekenhuis Brussel

Outline

• Sampling

Analysis techniques

- Interpretation and reporting
- Mosaicism in prenatal diagnosis

Evolution of prenatal diagnosis

13, 18, 21, X and Y

genome-wide

Trisomic (1) (1) (1) (1)

Vrije Universiteit Brussel

Consensus 8 Belgian genetic centers

- From 2013 in Belgium: for all prenatal samples = aCGH
 - → Consensus:
 - Use 60K arrays (or comparable resolution)
 - Always test for maternal cell contamination
 - Always obtain a parental blood sample
 - Always have at least 1 backup flask in culture
 - Testing for triploidy is done (FISH, STR, SNP array)
 - A rapid aneuploidy test is not necessary if the TAT is less than one week

Batching samples \rightarrow benefits for cost (lab work)

QF-PCR: rapid aneuploidy + MCC

Multiple STR-markers Chr 13-18-21-X-Y

Array CGH-Principal

Array CGH prenatal result

- In Belgium 2013: aCGH for all prenatal samples
 - \rightarrow consensus: to use 60K arrays (60 000 probes) or an equivalent for an average resolution of 400 kb
 - → Additional diagnostic yield (compared to conventional kayotyping; Shaffer et al. 2012; Wapner et al.2012):
 - ±10% in fetuses with multiple ultrasound abnormalities
 - ± 1% in lower risk women, such as those of advanced maternal age
 - → Drawback: introduce CNVs of uncertainty into the diagnostic interpretation

NGS for CNV detection

Outline

- Goal
- Sampling
- Analysis techniques
- Interpretation and reporting
- Mosaicism in prenatal diagnosis

National consensus guideline between the 8 Centres for Medical Genetics in Belgium

- Practical recommendation of pre- and postcounselling
 - → can we expect parents to make 'on spot' decisions on what they do and do not want to know?
 - → should we confront parents with questions that are unlikely to be relevant for them?
- How to interpret and report prenatal array results

European Journal of Medical Genetics 57 (2014) 151-158

Review

Implementation of genomic arrays in prenatal diagnosis: The Belgian approach to meet the challenges

Olivier Vanakker^a, Catheline Vilain^d, Katrien Janssens^b, Nathalie Van der Aa^b, Guillaume Smits^d, Claude Bandelier^h, Bettina Blaumeiser^b, Saskia Bulk^g, Jean-Hubert Caberg^g, Anne De Leener^d, Marjan De Rademaeker^c, Thomy de Ravel^f, Julie Desir^e, Anne Destree^e, Annelies Dheedene^a, Stéphane Gaillez^g, Bernard Grisart^e, Ann-Cécile Hellin^g, Sandra Janssens^a, Kathelijn Keymolen^c, Björn Menten^a, Bruno Pichon^d, Marie Ravoet^h, Nicole Revencu^h, Sonia Rombout^e, Catherine Staessens^c, Ann Van Den Bogaert^c, Kris Van Den Bogaert^f, Joris R. Vermeesch^f, Frank Kooy^b, Wes Sznajer^h, Koen Devriendt^{f,*}

* Omter for Medical Cenetics, Universiteit Cent, Belgium

- ^bCenter for Medical Genetics, Universit et Antwerpen, Belgium
- Genter for Medical Genetics, Wije Universiteit Brussel, Belgium
- ⁴Center for Medical Genetics, Université Libre de Bruselles, Belgium
- "Genter for Medical Genetics, IFG, Charleroi Gozodies, Belgium
- ¹Center for Medical Genetics, Katholiske Universiteit Leuven, Belgium
- ⁸Genter for Medical Genetics, Université de Liège, Belgium
- ^bCenter for Medical Genetics, Université Catholique de Louvain, Belgium

Prenatal array guidelines

- Classification of variants with regard to pathogenicity:
 - \rightarrow Pathogenic
 - → Benign variants without functional consequences
 - \rightarrow Unclassified variants (UV)

<u>https://www.college-</u> genetics.be/assets/recommendations/fr/guidelines/BeSHG%20prenatal%20consortium_guid elines%20prenatal%20array.pdf

Pathogenic CNV

- known to be associated with a phenotype (e.g. del22q11.2)
- resulting in a known effect on gene function and known phenotypic effect

Are communicated

Benign CNV without functional consequences

 Is repeatedly found in the normal population and not enriched in individuals with abnormal phenotypes

Are NOT communicated

Unclassified variants (UV)

- In principle, UVs are NOT communicated and parental analysis is not performed.
 - unless one expects that this will add to the interpretation of the UV and to the decision to communicate this CNV.

Examples include CNVs with a higher degree of suspicion that they may cause a phenotype, the presence of ultrasound anomalies, family history etc.

In case of uncertainty, the ad hoc committee is consulted for advice. This is done before the final protocol is issued.

Analysis prenatal arrays

Vanakker et al., 2014

Susceptibility CNVs

CNVs that are risk factors for developmental disorders

NOT communicated

 unless the risk is large enough and/or the CNV is associated with structural malformations for which ultrasound follow-up is indicated

SEE list

available on the website of the College for Genetics: https://www.collegegenetics.be/nl/voor-deprofessionele/good-practice-et-richtlijnen-voorberoepsbeoefenaars/richtlijnen.html.

List of susceptibility loci

chr	start in Mb (hg19)	stop in Mb (hg 19)	size in kb	CNV	gene	phenotype	morph. anomaly	return?	OMIM	update May 2017	
1	146.57	147.39	820	distal 1q21.1 dup	GJA5 (CX40)	ID, DD, ASD, schizophrenia	macrocephaly, CHD	YES	612475	YES	
1	146.57	147.39	820	distal 1q21.1 del	GJA5 (CX40)	ID, DD, ASD, SZ, facial dysmorphism	microcephaly, CHD, renal and urinary tract anomalies	YES	612474	YES	
1	171.81	172,38(?)	57	1q24.3 del	DNM3	ID	IUGR, microcephaly, brachydactyly	YES			
2	50	51.11	1110	2p16.3 del (exon 6-24 del)	NRXN1	ID, ASD, SZ, DD, dysmorphic features	none	YES	614332		i
15	31.13	32.48	1350	15q13.3 del	CHRNA7	DD, ID, ASD, epilepsy, SZ	microcephaly, CHD	YES 612001 YES		YES	
15	99.36	102.52	3160	15q26 del	IGF1R	MR	IUGR	YES		YES	
16	28.74	28.96	220	16p11.2 distal del	SH2B1	obesity, DD, ID, SZ	none	YES	613444	YES	
15	29.59	30.19	600	16p11.2 proximal dup	ТВХБ	ASD, ID, DD, SZ, anorexia	microcephaly	YES	614671	moved to YES since actionable; penetrance del and dup comparable	
15	29.59	30.19	600	16p11.2 proximal del	ТВХб	ID, DD, ASD, obesity, SZ, speech delay	macrocephaly, vertebra	YES	611913	YES	
17	34.82	36.21	1390	17q12 deletion syndrome RCAD (renal cysts & diabetes)	TCF2	facial dysmorphy, genital abnormalities, ID, DD, ASD, MODY	renal anomalies	YES	614527	YES	
22	19.02	20.29	1270	22q11.2 dup	TBX1	ASD, ID, DD, dysmorphic features	microcephaly, CHD	YES	608363	YES	
1	144.97	146.61	1640	1q21.1 dup	HFE2	DD, ASD	CHD	NO		NO	
2	50	51.11	1110	2p15.3 del (whole gene, intronic, exon 1-5)	NRXN1	ID, ASD, SZ, DD, dysmorphic features	none	NO	614332	NO	0
2	110.87	110.98	110	2q13 dup	NPHP1	ASD, ID	none	NO		NO	
2	111.4	113	1600	2q13del		ID, DD, dysmorphic features	CHD			NO (Govaerts 2017)	
3	1.7	2.8	1100	3p26.3 del	CNTN4	ASD				NO (Govaerts 2017)	
3	195.7	197.30	1600	3q29 dup		MR, DD	none	NO		NO	
10	49	52.4	3400	10q11.22q11.23 del		ID, DD				NO (Govaerts 2017)	
10	49	57.4	3400	10011 22011 23 del		ID DD				NO (Govaerts 2017)	

Incidental findings

 Only highly penetrant monogenic disorders are considered, with validated evidence on the phenotype associated with the deletion or duplication

Incidental findings

Four categories are distinguished:

- Late-onset genetic disorders with clinical utility
- will be communicated (typically cancer caused by the deletion of a tumor suppressor gene)
- Late onset disease without therapeutic possibilities
- > the decision after consulting the ad hoc committee
- Carrier for X-linked recessive disorders
- will be communicated
- Carrier for autosomal recessive disorders
- will not be communicated

Analysis prenatal arrays

niversitair Ziekenhuis Brus

Vanakker et al., 2014

Implementation of an Ad Hoc committee

 2 clinical geneticists and 2 cytogeneticist from each center = 32 individuals
cases are presented to the committee through e-mail
AIM: to reach a consensus decision

within 24-48h

 less subjective
more consistent counselling in case of second opinion in another centre
rapid learning curve on evaluation of 'difficult' CNVs

Advisory role

Clinician holds responsibility on final decision

Conclusion national guidelines

- The National consensus approach solves:
- technical issues (resolution, what to test for, etc..)
- variation in interpretation amongst laboratories
- variation of reporting
- issues related to liability

Practical aid for those routinely using prenatal arrays

Conclusion national guidelines

Show: 10 🗸	Search:	
Bestanden	Down	loaden
BeSHG CFTR - 2012	>	
BeSHG FMR-1 - 2012	>	
BeSHG Postnatal Karyotype - 2012	>	
BeSHG prenatal consortium_guidelines for NIPT good clinical practice	>	
BeSHG prenatal consortium_guidelines for fetal genome-wide sequencing (NGS) in ongoing pregnancies	>	
BeSHG prenatal consortium_guidelines for prenatal rasopathy panel	>	
BeSHG prenatal consortium_guidelines managing incidental findings detected by NIPT	>	
BeSHG prenatal consortium_guidelines prenatal array	>	
BeSHG prenatal consortium_table susceptibility loci	>	
COVID19_WHO_Laboratory biosafety	÷	

tica

X

Jniversitair Zieke, Aussburger

Outline

- Goal
- Sampling
- Analysis techniques
- Interpretation and reporting
- Mosaicism in prenatal diagnosis

Mosaicism in prenatal diagnosis

Mosaicism

- \rightarrow Is difficult for making a conclusion
- → The presence of two or more cell lines in a tissue sample
- → Three categories
 - Confined placental mosaicism
 - True Constitutional fetal mosaicism
 - Pseudomosaicism refers to an abnormality that arose during tissue culture in vitro (cultural artifact)

Mosaicism

Gardner & Sutherland Chromosome abnormalities and genetic counseling, 5th edition

Universitair Ziekenhuis Brusse

Confined placental Mosaicism

- Confined placental mosaicism
 - → An abnormal cell line may only exist in the extra-embryonic tissues of the placenta
 - → Is encountered at CVS rather than AC
 - → It is uncommon that mosaicism at CVS reflects a true constitutional mosaicism of the fetus
 - More than 50000 procedures (Grati et al. 2014)
 - In 2,2% of CVS mosaicism was seen -> 0,3% proved to have true fetal mosaicism

True fetal Mosaicism?

- Chorion Villi Sampling
 - → Samples more distantly related from the fetus
- Amniocentesis
 - → Cells closely reflect the true constitution of the fetus