Pharmacogenetics and pharmacogenomics

Vincent Bours Genetics Center CHU / University of Liège

- 2 million people each year
- 100 000 deaths/year
- 7% of hospital admissions
- Cost: > 30 billion \$
- Causes:
 - Environmental: drug interactions
 - Co-morbidity
 - Genetic factors
- Pharmacogenetics: Could genetic factors be anticipated?

If it were not for the great variability among individuals, medicine might as well be a science and not an art.

Sir William Osler, 1892

Table 11.1Ethnic variations in somepharmacogenetic disorders			
Disorder	Ethnic group	Frequency (%)	
Slow acetylation	Europeans Orientals	50	
Pseudocholinesterase variants	Europeans Eskimos	<1 <1 1-2	
G6PD deficiency	N. Europeans S. Europeans Afro-Caribbeans	<1 up to 25	
Atypical ADH	Europeans Orientals	5 85	
	Orientals	00	

Pharmacogenetics

1. Drug metabolism

- Phase I: CYP, ...
- Phase II: TPMT, NAT2, GST, ...

2. Transport

- MDR (ABC)

3. Targets

- Beta-adrenergic receptor

4. Unexpected side effects

- Long QT

- Deafness and aminoglycosids, ...

17

Pharmacogenetics

1. Drug metabolism

- Phase I: CYP, ...
- Phase II: TPMT, NAT2, GST, ...

PERSPECTIVES

Pharmacokinetics

Isoniazid treatment of children: can genetics help guide treatment? N Cranswick, K Mulholland

21

Cytochrome P450 2D6 (CYP2D6) Codeine

Activated in morphine

Slow metabolisers: no response Fast metabolisers: morphine overdose

FDA Warns of Rare Morphine Overdose in Breastfed Babies

Nursing mothers with a genetic predisposition for rapidly metabolizing codeine in pain medication can seriously overdose their babies with morphine.

29

Safety of codeine during breastfeeding

Fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine

Parvaz Madadi, Gideon Koren, MD, FRCPC, [...], and Katarina Aleksa,

Abstract

QUESTION Recently a newborn died from morphine poisoning when his mother used codeine while breastfeeding. Many patients receive codeine for postlabour pain. Is it safe to prescribe codeine for nursing mothers?

ANSWER When a mother is an ultrarapid metabolizer of cytochrome P450 2D6, she produces much more morphine when taking codeine than most people do. In this situation, newborns might be exposed to toxic levels of morphine when breastfeeding.

Thiopurine S-methyltransferase (TPMT) Mercaptopurine, Azathioprine

Weak metabolisers: myelosuppression after regular doses

Clinically relevant test

Ethnic differences

Drug-Metabolizing Enzyme	Frequency of Variant Poor- Metabolism Phenotype	Representative Drugs Metabolized	Effect of Polymorphism
Cytochrome P-450 2D6 (CYP2 D6)	6.8% in Sweden 1% in China ¹⁷	Debrisoquin ¹⁵ Sparteine ¹⁶ Nortriptyline ²³ Codeine ^{27,28}	Enhanced drug effect Enhanced drug effect Enhanced drug effect Decreased drug effect
Cytochrome P-450 2C9 (CYP2C9)	Approximately 3% in England ²⁹ (those homozygous for the*2 and *3 alleles)	Warfarin ^{29,30} Phenytoin ^{31,32}	Enhanced drug effect ²⁹⁻³
Cytochrome P-450 2C19 (CYP2C19)	2.7% among white Americans ³³ 3.3% in Sweden 14.6% in China ¹⁷ 18% in Japan ³³	Omeprazole ^{34,35}	Enhanced drug effect ^{36,3}
Dihydropyrimidine dehydrogenase	Approximately 1% of population is heterozygous ³⁸	Fluorouracil ^{39,40}	Enhanced drug effect ^{39,4}
Butyrylcholinesterase (p seudocholin esterase)	Approximately 1 in 3500 Europeans ⁴¹	Succinyl choline ^{9,41}	Enhanced drug effect ^{9,41}
examples of genetically poly drugs that have clinically rel	morphic phase I enzymes are listed that catalyz evant variations in their effects.	ze drug metabolism, incl	uding selected examples of

Pharmacogenetics

1. Drug metabolism

- Phase I: CYP, ...
- Phase II: TPMT, NAT2, GST, ...

2. Transport

- MDR (ABC)

3. Targets

- Beta-adrenergic receptor

At least 13 SNPs 12 haplotypes

Correlation clinical response/haplotype

Table 1. Genetic Polymorphisms in Drug Target Genes That Can Influence Drug Response.*		
Gene or Gene Product	Medication	Drug Effect Associated with Polymorphism
ACE	ACE inhibitors (e.g., enalapril) Fluvastatin	Renoprotective effects, blood-pressure reduction, reduc- tion in left ventricular mass, endothelial function ³²⁻⁴⁰ Lipid changes (e.g., reductions in low-density lipoprotein cholesterol and apolipoprotein B); progression or re- gression of coronary atherosclerosis ⁴¹
Arachidonate 5-lipoxygenase	Leukotriene inhibitors	Improvement in FEV142
β_2 -Adrenergic receptor	eta_2 -Agonists (e.g., albuterol)	Bronchodilatation, susceptibility to agonist-induced de- sensitization, cardiovascular effects ⁴³⁻⁵⁰
Bradykinin B2 receptor	ACE inhibitors	ACE-inhibitor-induced cough ⁵¹
Dopamine receptors (D2, D3, D4)	Antipsychotics (e.g. haloperidol, clozapine)	Antipsychotic response (D2, D3, D4), antipsychotic- induced tardive dyskinesia (D3), antipsychotic-induced acute akathisia (D3) ⁵²⁻⁵⁶
Estrogen receptor- $lpha$	Conjugated estrogens Hormone-replacement therapy	Increase in bone mineral density ⁵⁷ Increase in high-density lipoprotein cholesterol ⁵⁸
Glycoprotein IIIa subunit of gly- coprotein IIb/IIIa	Aspirin or glycoprotein IIb/IIIa inhibitors	Antiplatelet effect ⁵⁹
Serotonin (5-hydroxytryptamine) transporter	Antidepressants (e.g., clomipra- mine, fluoxetine, paroxetine)	5-Hydroxytryptamine neurotransmission, antidepressant response ⁶⁰⁻⁶²

Pharmacogenetics

1. Drug metabolism

- Phase I: CYP, ...
- Phase II: TPMT, NAT2, GST, ...

2. Transport

- MDR (ABC)

3. Targets

- Beta-adrenergic receptor

4. Unexpected side effects

- Long QT

- Deafness and aminoglycosids, ...

Deafness induced by aminoglycosids

Polymorphisms in the mitochondrial 12S rRNA

Targeted by the antibiotics

49

Hypersensitivity reactions

Carbamazepin: - HLA B*15:02: Asia, standard practice in Taiwan before carbamazepin prescription -HLA A*31:01: Europe

Abacavir: HLA-B*5701

AdducinHypertensionDiureticsMyocardial infarction or strokes69Apolipoprotein E (APOE)Progression of atherosclerosis, is chemic cardiovascular eventsStatins (e.g., simvastatin)Enhanced survival70.71Apolipoprotein E (APOE)Alzheimer's diseaseTacrineClinical improvement72HLAToxicityAbacavirHypersensitivity reaction73.74Cholesterol ester transfer protein (CETP)Progression of atherosclerosisStatins (e.g., pravastatin)Slowing of progression of atherosclerosis by pravastatin75Ion channels (HERG, KVLQT1, Mink, MIRP1GlomaErythromycin, terfenadine, cisa- pride, clarithromycin, quinidimIncreased risk of drug-induced torsade de pointer57578ParkinGlomaCarmustineResponse of glioma to carmustine63ParkinDeep-vein thrombosis and cerebral-vein thrombosisOral contraceptives8Stromelysin-1Atherosclerosis progressionStatins (e.g., pravastatin)Increased risk of deep-vein and cerebral-vein thrombosis with oral contraceptives8Stromelysin-1Deep-vein thrombosis and cerebral-vein thrombosis progressionStatins (e.g., pravastatin)Reduction in cardiovascular events by prava- statin (death, myocardial infarction, stroke, angina, and others); reduction in risk of repeated angioplasty83	Gene or Gene Product	Disease or Response Association	Medication	Influence of Polymorphism on Drug Effect or Toxicity
Apolipoprotein E (APOE)Progression of atherosclerosis, is chemic cardiovascular eventsStatins (e.g., simvastatin)Enhanced survival?0.71Apolipoprotein E (APOE)Alzheimer's diseaseTacrineClinical improvement?2HLAToxicityAbacavirHypersensitivity reaction?3.74Cholesterol ester transfer protein (CETP)Progression of atherosclerosis of atherosclerosisStatins (e.g., pravastatin)Slowing of progression of atherosclerosis by 	Adducin	Hypertension	Diuretics	Myocardial infarction or strokes ⁶⁹
Apolipoprotein E (APOE)Alzheimer's diseaseTacrineClinical improvement?2HLAToxicityAbacavirHypersensitivity reaction?3.74Cholesterol ester transfer protein (CETP)Progression of atherosclerosisStatins (e.g., pravastatin)Slowing of progression of atherosclerosis by pravastatir?5Ion channels (HERG, KVLQT1, Mink, MiRP1)Congenital long-QT syndromeErythromycin, terfenadine, cisa- pride, clarithromycin, quinidimIncreased risk of drug-induced torsade de pointers76-78Methylguanine methyl- transferase (MGMT)GliomaCarmustineResponse of glioma to carmustine63ParkinParkinson's diseaseLevodopaClinical improvement and levodopa-induced dyskinesias779Prothrombin and factor V bergen-vein thrombosis and cerebral-vein thrombosisOral contraceptivesIncreased risk of deep-vein and cerebral-vein thrombosis with oral contraceptivessonStromelysin-1Atherosclerosis progressionStatins (e.g., pravastatin)Reduction in cardiovascular events by prava- statin (death, myocardial infarction in risk of repeated angioplasty ⁸³	Apolipoprotein E (APOE)	Progression of atherosclerosis, is- chemic cardiovascular events	Statins (e.g., simvastatin)	Enhanced survival ^{70,71}
HLAToxicityAbacavirHypersensitivity reaction73.74Cholesterol ester transfer protein (CETP)Progression of atherosclerosis of adherosclerosisStatins (e.g., pravastatin)Slowing of progression of atherosclerosis by pravastatin75Ion channels (HERG, 	Apolipoprotein E (APOE)	Alzheimer's disease	Tacrine	Clinical improvement ⁷²
Cholesterol ester transfer protein (CETP)Progression of atherosclerosisStatins (e.g., pravastatin)Slowing of progression of atherosclerosis by pravastatin?5Ion channels (HERG, KvLQT1, Mink, MiRP1)Congenital long-QT syndromeErythromycin, terfenadine, cisa- pride, clarithromycin, quinidineIncreased risk of drug-induced torsade de pointes76-78Methylguanine methyl- transferase (MGMT)GliomaCarmustineResponse of glioma to carmustine63ParkinParkinson's diseaseLevodopaClinical improvement and levodopa-induced dyskinesias79Prothrombin and factor V cerebral-vein thrombosisOral contraceptivesIncreased risk of deep-vein and cerebral-vein thrombosis with oral contraceptives50Stromelysin-1Atherosclerosis progressionStatins (e.g., pravastatin)Reduction in cardiovascular events by prava- statin (death, myocardial infarction, stroke, angina, and others); reduction in risk of repeated angioplasty ⁸¹	HLA	Toxicity	Abacavir	Hypersensitivity reaction73,74
Ion channels (HERG, KVLQT1, Mink, MiRP1Congenital long-QT syndromeErythromycin, terfenadine, cisa- pride, clarithromycin, quinidineIncreased risk of drug-induced torsade de pointes ⁷⁶⁻⁷⁸ Methylguanine methyl- transferase (MGMT)GliomaCarmustineResponse of glioma to carmustine ⁶³ ParkinParkinson's diseaseLevodopaClinical improvement and levodopa-induced dyskinesias ⁷⁹ Prothrombin and factor VDeep-vein thrombosis and cerebral-vein thrombosisOral contraceptivesIncreased risk of deep-vein and cerebral-vein thrombosis with oral contraceptives ⁸⁰ Stromelysin-1Atherosclerosis progressionStatins (e.g., pravastatin) stroke, angina, and others); reduction in risk of repeated angioplasty ⁸¹	Cholesterol ester transfer protein (CETP)	Progression of atherosclerosis	Statins (e.g., pravastatin)	Slowing of progression of atherosclerosis by pravastatin ⁷⁵
Methylguanine methyl- transferase (MGMT) Glioma Carmustine Response of glioma to carmustine ⁶³ Parkin Parkinson's disease Levodopa Clinical improvement and levodopa-induced dyskinesias ⁷⁹ Prothrombin and factor V Deep-vein thrombosis and cerebral-vein thrombosis Oral contraceptives Increased risk of deep-vein and cerebral-vein thrombosis with oral contraceptives ⁸⁰ Stromelysin-1 Atherosclerosis progression Statins (e.g., pravastatin) Reduction in cardiovascular events by prava-statin (death, myocardial infarction, stroke, angina, and others); reduction in risk of repeated angioplasty ⁸¹	Ion channels (HERG, KvLQT1, Mink, MiRP1)	Congenital long-QT syndrome	Erythromycin, terfenadine, cisa- pride, clarithromycin, quinidine	Increased risk of drug-induced torsade de pointes ⁷⁶⁻⁷⁸
Parkin Parkinson's disease Levodopa Clinical improvement and levodopa-induced dyskinesias ⁷⁹ Prothrombin and factor V Deep-vein thrombosis and cerebral-vein thrombosis Oral contraceptives Increased risk of deep-vein and cerebral-vein thrombosis with oral contraceptivesson Stromelysin-1 Atherosclerosis progression Statins (e.g., pravastatin) Reduction in cardiovascular events by pravastatin (death, myocardial infarction, stroke, angina, and others); reduction in risk of repeated angioplasty ⁸¹	Methylguanine methyl- transferase (MGMT)	Glioma	Carmustine	Response of glioma to carmustine ⁶³
Prothrombin and factor V Deep-vein thrombosis and cerebral-vein thrombosis Oral contraceptives Increased risk of deep-vein and cerebral-vein thrombosis with oral contraceptives ⁵⁰ Stromelysin-1 Atherosclerosis progression Statins (e.g., pravastatin) Reduction in cardiovascular events by prava- statin (death, myocardial infarction, stroke, angina, and others); reduction in risk of repeated angioplasty ⁸¹	Parkin	Parkinson's disease	Levodopa	Clinical improvement and levodopa-induced dyskinesias ⁷⁹
Stromelysin-1 Atherosclerosis progression Statins (e.g., pravastatin) Reduction in cardiovascular events by pravastatin, statin (death, myocardial infarction, stroke, angina, and others); reduction in risk of repeated angioplasty ⁸¹	Prothrombin and factor V	Deep-vein thrombosis and cerebral-vein thrombosis	Oral contraceptives	Increased risk of deep-vein and cerebral-vein thrombosis with oral contraceptives ⁸⁰
	Stromelysin-1	Atherosclerosis progression	Statins (e.g., pravastatin)	Reduction in cardiovascular events by prava- statin (death, myocardial infarction, stroke, angina, and others); reduction in risk of repeated angioplasty ⁸¹

Website Stanford University

http://www.pharmgkb.org

Reviews the clinical utility of pharmogenetic tests <u>http://www.pharmgkb.org/search/clinicalAn</u> <u>notationList.action?levelOfEvidence=top</u>

53

CPIC

Clinical pharmacogenetics Implementation Consortium

https://cpicpgx.org

DPYD (5-Fu)

French recommendations (2018)

Based on the levels of evidence from the literature data and considering current French practices, the Group of Clinical Pharmacology in Oncology (GPCO)-UNICANCER and the French Network of Pharmacogenetics (RNPGx) recommend the following: (1) to screen DPD deficiency before initiating any chemotherapy containing 5-FU or capecitabine; (2) to perform DPD phenotyping by measuring plasma uracil (U) concentrations (possibly associated with dihydrouracil/U ratio), and DPYD genotyping (variants *2A, *13, p.D949V, HapB3); (3) to reduce the initial FU dose (first cycle) according to DPD status, if needed, and further, to consider increasing the dose at subsequent cycles according to treatment tolerance.

DPYD (5-Fu)

Common mutations with enzyme low activity Do not identify all patients with DPYD deficiency

Dosage of the ratio dihydrouracil/uracil in the plasma : better sensitivity

57

DPYD (5-Fu) EMA recommendations (March 2020) <u>https://www.esmo.org/oncologynews/ema-provides-new-testing-andtreatment-recommendations-forfluorouracil-capecitabine-and-tegafur</u>

DPYD (5-Fu)

EMA recommendations (March 2020)

EMA PROVIDES NEW TESTING AND TREATMENT RECOMMENDATIONS FOR FLUOROURACIL CAPECITABINE AND TEGAFUR

Patients should be tested for DPD deficiency before starting treatment

Date:20 Mar 2020 Topics:Anticancer agents & Biologic therapy

59

DPYD (5-Fu)

Joint Belgian Recommendation on Screening for DPD-deficiency in patients treated with 5-FU, capecitabine (and tegafur)

we recommend phenotype or targeted genotype testing for DPD deficiency before starting 5-FU, capecitabine or tegafur. We strongly suggest a stepwise approach using phenotype testing upfront because of the higher sensitivity and the lower cost for the society.

Casneuf et al., Acta Clin Belg, 2022

CANCER

1. « Host » pharmacogenetics

- TPMT and mercaptopurine.
- Dihydropyrimidine dehydrogenase and 5-fluoruracile
- UGT1A1

2. « Tumour » pharmacogenetics / theranostics

- HER2 amplification and Herceptin
- Ras mutation and resistance to anti-EGFR antibodies
- Bcr-Abl fusion gene and response to glivec
- MGMT methylation and response to alkylating agents ,

= target identification or acquired resistance

63

CANCER

1. « Host » pharmacogenetics

+

2. « Tumour » pharmacogenetics

BRCA mutations linked with clinical response to platine agents and PARP inhibitors

<u>Clinical relevance</u>

Goal: to predict a clinical response, to prevent side effects, to adapt the doses. Tailored treatment.

65

Political/economic relevance

Goal: to save money (avoiding useless treatments or important side effects).

Companies

Goal: to save money

Defining the target population Reducing the size of clinical trials Reducing and predicting side effects

67

Current research and future directions Include pharmacogenetic/pharmacogenomic tests in clinical trials. Consider ethnical differences. Perspectives for a large screening of PG variants in every individual ??

Pharmacogenetics in emerging countries

Impact of pharmacogenomics on neglected diseases in the developing world T Pang, Am J Pharmacogenomics, 2003

Important impact on treatment of tuberculosis, malaria and HIV

Response rates different than in Occident

Development of therapeutics more adapted to African patients??

69

Pharmacogenetics in emerging countries

Pharmacogenetics and rational drug use around the world. Pharmacogenetics and rational drug use around the world. Roederer et al., Pharmacogenomics, 2011

Pharmacogenetics in emerging countries

http://apps.who.int/iris/bitstream/handle/10665/43669/97 89241595469_eng.pdf?sequence=1&isAllowed=y

CF: genotype – treatment correlation

Mutation class	Defect	Phenotype	Example	Treatment strategy
I	Reduced CFTR protein expression	No protein	Gly542X Trp1282X	Production correctors (ataluren
11	Misfolded CFTR protein not transported to the cell surface	No traffic	Phe508del (∆F508) Asn1303Lys Ala561Glu	Corrector + potentiator (lumacaftor + ivacaftor, VX-661+ ivacaftor)
ш	Reduced/lack of CFTR channel opening	Impaired gating	Gly551Asp Ser549Arg Gly1349Asp	Potentiator (ivacaftor)
IV	Misshaped CFTR pore restricts Cl [.] movement	Decreased conductance	Arg117His Arg334Trp Ala455Glu	Potentiator (ivacaftor)
v	Reduced CFTR protein production	Less protein	3849+10 kb C→T Ala455Glu 3272-26A → G	No data available
VI	High CFTR protein turnover at the cell surface	Less stable	120del23 rPhe508del	No data available
VII	No transcription due to large deletions on CFTR gene	No mRNA	dele2,3 (21kb) 1717-1G →A	Unrescuable (By pass therapies?)

Pharmacogenetics

A few clinically actionable tests

To be done « on demand » or »prospectively »?

Ethnic variations in allele frequencies

81

Pharmacogenetics Novel mutation-specific treatments for genetic diseases