Chapter 9

Complex inheritance of common multifactorial disorders

Bettina Blaumeiser MD PhD

Medical Genetics University Hospital & University of Antwerp

> Universiteit Antwerpen

UZA'

Knowledge / Experience / Care

Program

9.15-10h	Elementary concepts of multifactorial diseases Bettina Blaumeiser
10-10.45h	Concepts in complex genetics: from Fisher to GWAS Guy Van Camp
10.45-11.30h	Beyond GWAS Erik Fransen
11.30-12h	Osteoporosis as paradigm for studies into complex diseases <i>Wim Van Hul</i>
12-13h	lunch break
13-14h	Of mice and human genetics Frank Kooy
14-16h	Data mining Geert Vandeweyer, Wim Wuyts

Location R0.03

Lunch: foyer Q-building

Universiteit UZA

Complex disorders: content

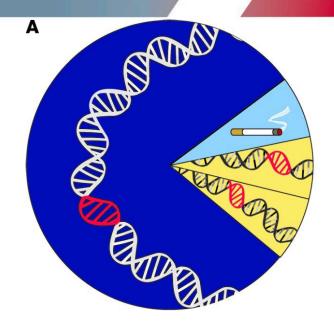
- 1. Qualitative and quantitative traits
- 2. Familial aggregation and correlation
- 3. Determining the relative contribution of genes and environment to complex disease
- 4. Examples of common multifactorial diseases with a genetic contribution
- 5. Examples of multifactorial traits for which specific genetic and environmental factors are known
- 6. The challenge of multifactorial disease with complex inheritance

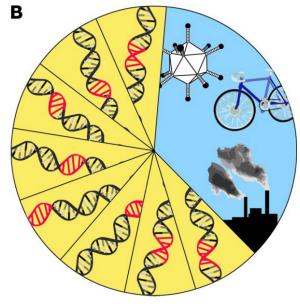
Influenza	Diabetes	Cystic fibrosis
Varicella	Cancer	Huntington
Infections	Cardiac disease	Steinert

Environment

Genes

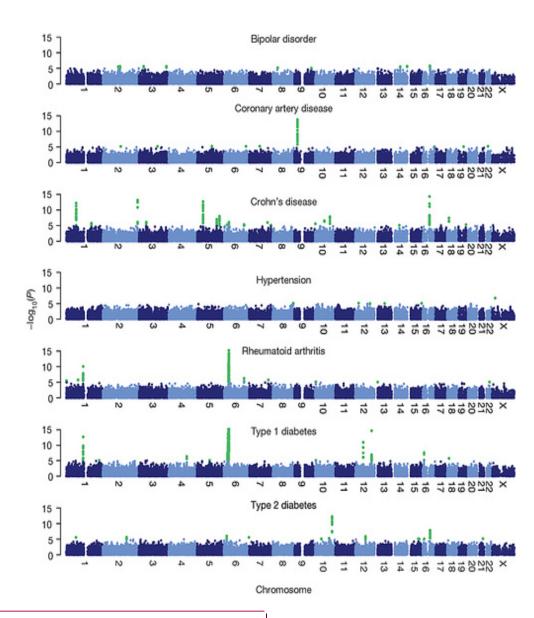
Type genetic disease	frequency/1000 individuals
 multifactorial diseases congenital malformations chromosome abberrations monogenic autosomal dominant autosomal recessive X-linked 	70 - 90 20 - 50 6 - 9 4.5 - 15 3 - 9.5 2 - 2.5 0.5 - 2



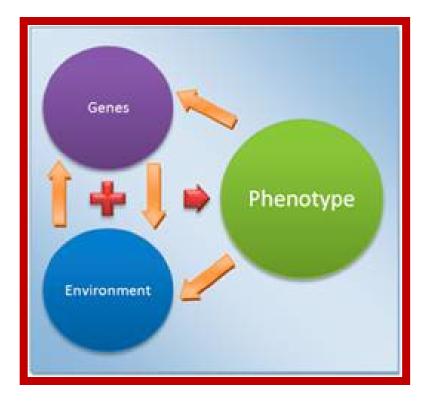

Multifactorial inheritance

A. Monogenic disease: rare

- cf. CF: incidence 1/2500, most frequent AR disease
- genes largely known


- B. Multifactorial disease: frequent
- More complex study design
- 2007 WTCCC study

Genome-wide scan for associations of SNPs with each of the seven diseases.

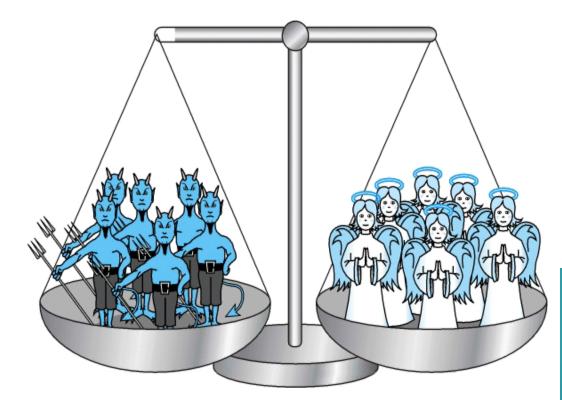

Chromosomes are shown in alternating shades of blue, significant SNPs (p-values<1 x 10-5) are highlighted in green.

Nature 447, 661-678 (7 June 2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls The Wellcome Trust Case Control Consortium

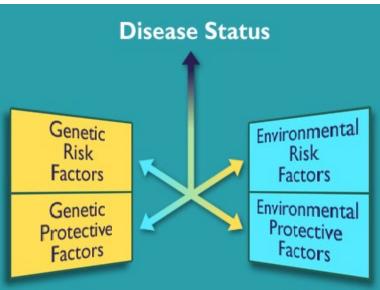
Huniversiteit

Multifactorial or complex disease

Different causes:


genes

environment infection stress nutrition


cf. polygenic: multiple genes involved in development of disease

Health or illness and complex diseases

- Balance of risk and protective factors from genes and environment
- Interaction

Qualitative or discrete trait

disease present or absent

Quantitative trait

measurable physiological or biochemical quantities

- 1. Familial aggregation of disease
- → clustering of affected individuals in families characteristic for complex disease familial aggregation ≠ complex disease
 - cf. chance (common trait)
 - environment
 - diet
 - socioeconomic status
 - behavior

Familial clustering

genetic factors

environmental factors (environmental exposures)

- 1. Familial aggregation of disease
- 2. Concordance & discordance
 - lack of penetrance
 - phenocopy

- 1. Familial aggregation of disease
- 2. Concordance & discordance
- 3. Measuring familial aggregation

a. relative risk ratio λ_r

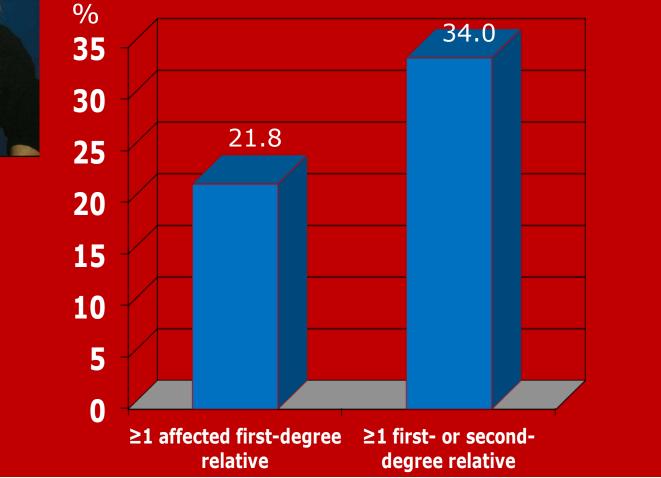
prevalence of disease in relatives of affected person prevalence of disease in general population

= λ_r if λ_r =1 => relative risk = population risk

Risk ratios λ_r for selected complex diseases (siblings of probands)

Disease

•	Schizophrenia	12
•	Autism	150
•	Bipolar disorder	7
•	DM type I	35
•	Crohn's disease	25
•	Multiple sclerosis	24

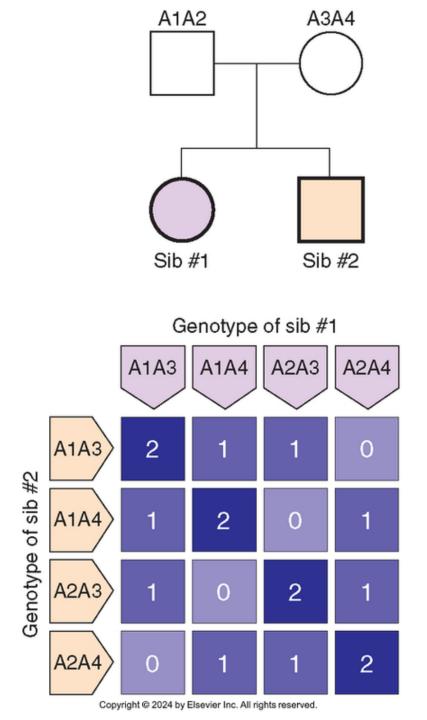

- 1. Familial aggregation of disease
- 2. Concordance & discordance
- 3. Measuring familial aggregation

b. Case-control studies

compare cases with controls with respect to family history

Familiality of alopecia areata (AA)

General population: 1-2%


Determining the relative contributions of genes and environment to complex disease

1. Concordance and allele sharing among relatives

dissect the contribution of genetic from environmental influences by comparing disease concordance in relatives

- monozygotic twins
- first degree relatives

Number of alleles shared in sibs: $\frac{1}{4}$ (2 alleles) + $\frac{1}{2}$ (1 allele) + $\frac{1}{4}$ (0 alleles) = 1 allele

Relationshipalleles sharedMZ twins1I degree1/2II degree1/4III degree1/8

Universiteit

Antwerpen

Determining the relative contributions of genes and environment to complex disease

- 1. Concordance and allele sharing among relatives
- 2. Unrelated family member controls

Determining the relative contributions of genes and environment to complex disease

- 1. Concordance and allele sharing among relatives
- 2. Unrelated family member controls
- 3. Twin studies

Twin studies

monozygotic twins (MZ):

• genetic identical, except somatic mutations and epigenetic changes

dizygotic twins (DZ):

• first degree relatives

concordant: both relatives display feature/disease *discordant*: feature/disease only displayed by one relative

degree of concordance: 0 - 1

=> degree of concordance larger among MZ twins (C_{MZ}) than DZ (C_{DZ}) if genetic factors are concerned

Twin studies

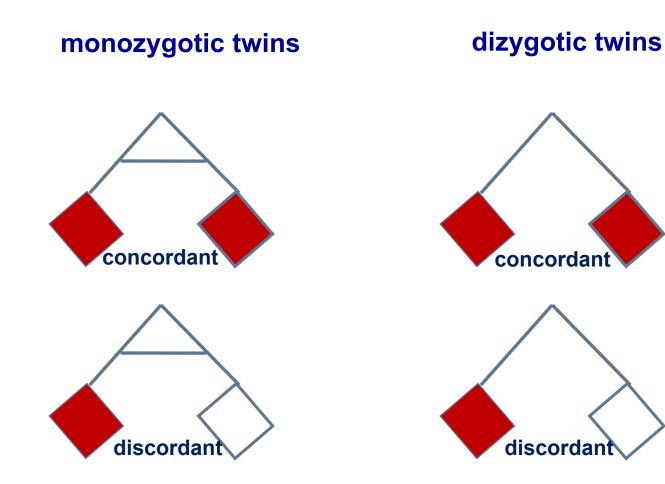


Fig. 12-5. Monozygotic twins, showing a striking similarity in physical appearance. Both twins developed myopia as teenagers.

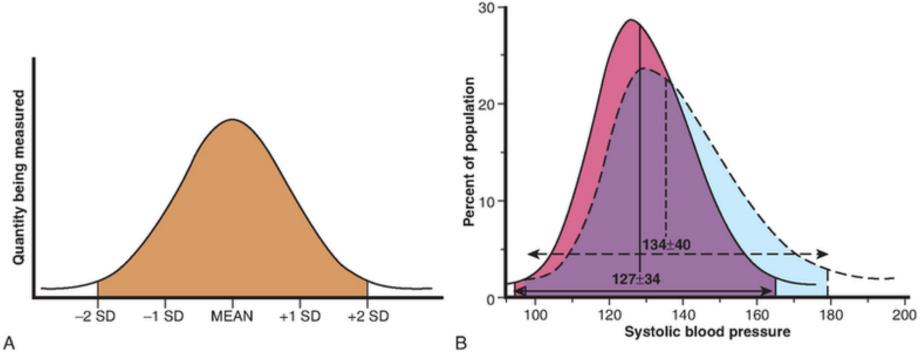
Copyright @ 2007 Mosby, Inc., an affiliate of Elsevier Inc.

Concordance rates in MZ and DZ twins

	Disorder	C _{MZ} (%)	C _{DZ} (%)
•	Nontraumatic epilepsy	70	6
٠	Multiple sclerosis	17.8	2
٠	DM type I	40	4.8
•	Schizophrenia	46	15
•	Bipolar disease	62	8
•	Osteoarthritis	32	16
•	Rheumatoid arthritis	12.3	3.5
•	Psoriasis	72	15
•	CL/CP	30	2
•	SLE	22	0

Universiteit / UZA

Limitations of twin studies


- **1. Genetic differences:** somatic rearrangements
 - random X inactivation
 - epigenetic changes
- 2. Environmental differences: different adulthood environment
 - intrauterine disparity
- **3.** Difference between different twin pairs
 - observed concordance is an average that applies to neither pair of

twins

- non-genetic phenocopies
- 4. Ascertainment bias: volunteer-based ascertainment
 - population-based ascertainment

1. The normal distribution

(B, Data from Sive PH, Medalie JH, Kahn HA, et al: Distribution and multiple regression analysis of blood pressure in 10,000 Israeli men, Am J Epidemiol 93:317327, 1971.)

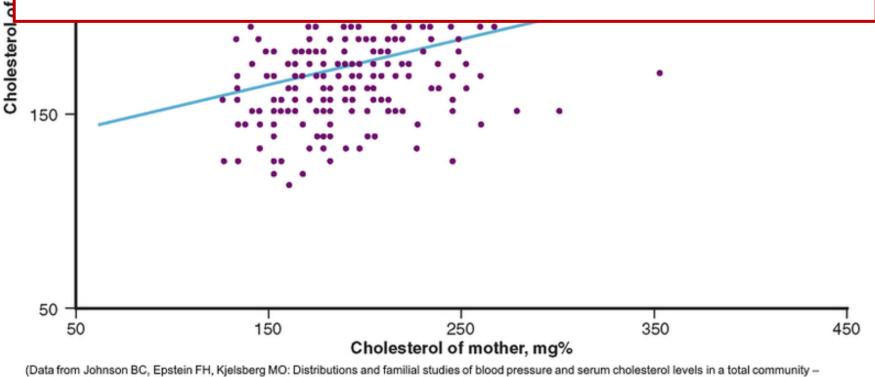
- 1. The normal distribution
- 2. The normal range

e.g. hypertension, hypercholesterolemia, obesity: values outside the normal range

when a quantitative trait is normally distributed in a population only 5% of the population will have measurements more than 2 SD above or below the population mean

1. Familial aggregation of quantitative traits

measurement of correlation of particular physiological quantities among relatives


coefficient of correlation (r): statistical measure applied to a pair of measurements

positive correlation (r = 1)negative correlation (r = -1)no correlation (r = 0)

Assumption: degree of similarity ~ to the number of alleles shared at relevant loci

=> the more closely individuals are related, the more alleles they share, the stronger the correlation of values will be

Tecumseh, Michigan. J Chronic Dis 18:147160, 1965.)

1. Heritability

H² = fraction of the total phenotypic variance of a quantitative trait that is caused by genes

 $H^2 = 0$ no genetic contribution to the total phenotypic variance $H^2 = 1$ genes are totally responsible for the total phenotypic variance

Estimating heritability from twin studies

$$H^2 = 2 \times r_{MZ} - r_{DZ}$$
)

difference in variance between MZ and DZ twins as degree for the importance of genes

Feature	H ²
Height BMI	0.8 0.7-0.8
AD disorder	1

Practical difficulties in measuring and interpreting H²

- 1. Relatives share more than their genes
- 2. Even when the heritability of a trait is high it does not reveal the underlying mechanism of inheritance of the trait
- Heritability is no intrinsic quality of a particular quantitative trait and cannot be considered in isolation from the population group and living conditions in which the estimate is being made

 no specification of loci and alleles involved, number of loci or how a particular genotype and set of environmental influences interact to cause a disease

=> show only genetic contribution

 need of theoretical models to explain the underlying mechanisms of complex disease: genetic epidemiology

Characteristics of inheritance of complex diseases

- Genes contribute to complex diseases but they are not single-gene disorders and have no simple Mendelian pattern of inheritance
- Complex diseases demonstrate familial aggregation because relatives of an affected individual are more likely to have disease-predisposing alleles in common with the affected person than unrelated individuals
- Pairs of relatives who share disease-predisposing genotypes at relevant loci may still be discordant for phenotype (=lack of penetrance) because of crucial role of nongenetic factors in aetiology of disease, cf. discordant MZ twins
- The closer the relationship between family members the more common the disease becomes and vice versa

Characteristics of inheritance of complex diseases

Recurrence risk is higher if proband's disease expression is more serious

Recurrence risks for isolated CL and isolated CL/P

Relationship to index case	Recurrence risk (%)
Sibling unilateral CL	2-3
Sibling unilateral CL/P	4
Sibling bilateral CL/P	5-6
Two affected siblings	10
Affected sibling and parent	10*
Affected parent	4

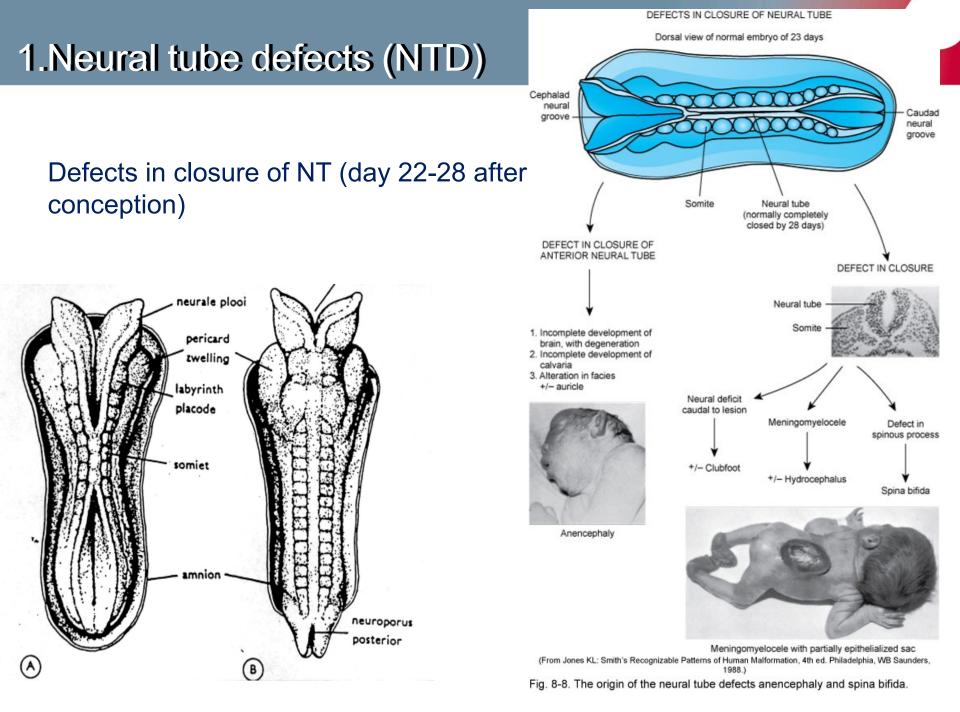
* Consider dominant risks with reduced penetrance.

Recurrence risk for isolated CP

Relationship to index case	Recurrence risk (%)
Sibling	2–3
Affected parent	4

Characteristics of inheritance of complex diseases

Recurrence risk is higher if the proband belongs to the least affected sex (=Carter effect)


e.g. pyloric stenosis is more frequent among males => recurrence risk for brother of affected male lower than for brother of affected female

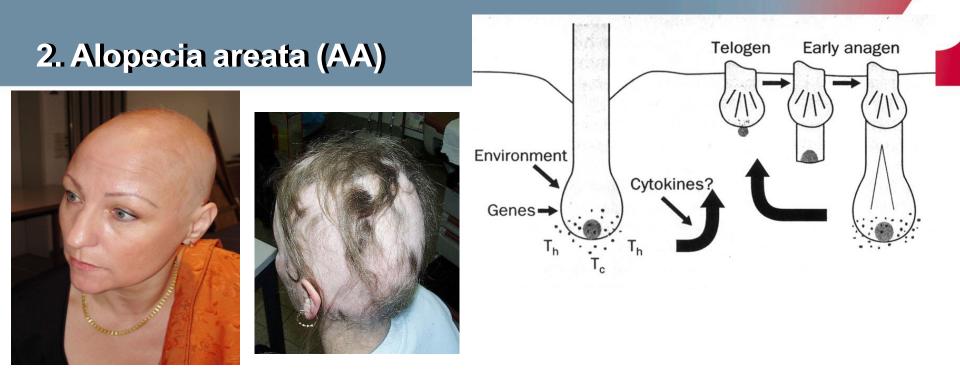
- susceptibility threshold higher for females

- Narrowed (stenosed) male index female index recurrence risks pyloric sphincter risk (%) risk (%) brother 3.8 9.2 sister 2.7 3.8 5.5 18.9 son 2.4 daughter 7.0 Junction of stomach and duodenum
- more risk factors needed until they develop disease

- 1. Neural tube defects (NTD)
- 2. Alopecia areata (AA)

spina bifida aperta

spina bifida occulta



anencephaly

Recurrence risk NTD

 population risk 	0,1%
 1 parent 	2-4%
• 1 sib	1-3%
• 2 sibs	5-10%
 2nd degree 	0,5-1%
• 3 ^d degree	0,5%

Non-scarring reversible circumscribed hair loss with sudden onset and recurrent course

Population risk : 1-2%

AA in families: familial clustering has been reported for all investigated populations (e.g. USA, Europe, India, China)

Lifetime risks

Relation	Lifetime risk (%)
First-degree relatives	
Parents	7.8
Sibs	7.1
Children	5.7
Second-degree relatives	
Grandparents	1.6
Uncle/Aunt	1.2
Nephew/Niece	3.5

Blaumeiser et al, J Am Acad Dermatol. 2006

