

Principles of Molecular Disease: Lessons from the Hemoglobinopathies

Postgraduate course Human Genetics 2/12/2021

Bert Callewaert, MD, PhD Center for Medical Genetics Ghent University Hospital

The effect of mutations on protein function

- mutations resulting in a LOSS OF FUNCTION of the protein
- mutations resulting in a GAIN OF FUNCTION of the protein
- mutations resulting in a **NOVEL PROPERTY** by the protein
- mutations resulting in gene EXPRESSION at the **wrong time or place**

LOSS-OF-FUNCTION MUTATIONS

- *deletion* of the entire gene (and eventually also contiguous genes) examples: microdeletion syndromes, monosomies (Turner), α-thalassemias
- chromosomal rearrangements
- premature stop codon (nonsense or frameshift mutations)
- missense mutations may *abolish protein function e.g. Catshl syndrome: loss- of – function FGFR3*

Severity of disease ~ amount of function lost

FGFR3 p.R621H

Postgraduate course Human Genetics – 02/12/21 Bert Callewaert, MD, PhD – Center for Medical Genetics – Ghent University Hospital

LOSS-OF-FUNCTION MUTATIONS

- missense mutations

Severity of disease ~ **amount** of function lost E.g. Congenital adrenal hyperplasia

LOSS-OF-FUNCTION MUTATIONS

- missense mutations

Severity of disease ~ amount of function lost

E.g. Congenital adrenal hyperplasia

Enzyme Activity	Phenotype	CYP21A2 Mutation	
0%	Severe (classic)	Whole-gene deletion (null mutation) Large gene conversion p.Gly111ValfsTer21 p.[Ile237Asn;Val238Glu;Met2 40Lys] p.Leu308PhefsTer6 p.Gln319Ter p.Arg357Trp	
Minimal residual activity (<1%)		c.293-13A>G or c.293C>G	
2%-11%		p.lle173Asn	
~20%-50%	Mild (non-classic)	p.Pro31Leu p.Val282Leu p.Pro454Ser	

GAIN-OF-FUNCTION MUTATIONS

- = mutations that enhance one or more of the normal functions of the protein
 - mutations that enhance one normal function of the protein f.e.: the G380R mutation in *FGFR3* causing achondroplasia
 - mutations that increase the production of a normal protein in its normal environment
 - f.e.: trisomy 21 (Down syndrome) *note: Alzheimer* duplication of *PMP22* in Charcot-Marie-Tooth disease type 1A chromosomal duplications in cancer

NOVEL PROPERTY MUTATIONS

= (missense) mutations \rightarrow novel property of the protein +/- normal function

infrequent (most AA substitutions either neutral or detrimental)

e.g. sickle cell disease

MUTATIONS ASSOCIATED WITH HETEROCHRONIC OR ECTOPIC GENE EXPRESSION

= mutations that alter the regulatory regions of a gene

Examples:

- oncogene mutations in cancer
- hereditary persistence of HbF (continued expression of γ-globin)
 •PITX1

Liebenberg syndrome

Mutations causing a shortage of gene product

Normal

Gendefecten die leiden tot een eiwittekort

Gene introduction

Team Pia WIE BEN IK? DONATIES ACTIES NIEUWS BLOG CONTACT N. onasemnogene abeparvovec-xioi Rx ONLY Suspension for intravenous infusion. 2.0 x 10¹³ vector genomes/mL See enclosed prescribing information for dosage and directions for use. NDC 71894-115-01 Contains no Discard any avexs preservatives. unused portion. onasemnogene ab gene abeparvovec-xi Upon receipt store refrigerated at ZULEDIOMA's a rejetered ZOLGENSMA 2°C to 8°C (36°F to 46°F). trademark of Auella, trc. Manufactured by Auella, trc. Rx ONLY Must use within 14 days of receipt. Store in the original carton until time of use. Berecotum L-605 ing information and for use. Suspension for intravenous infusion. DO NOT SHAKE DO NOT REFREEZE COOP AND DO See enclosed prescribing information for dosage and directions for use. 1672 Manufactured by AveXis, Inc. Bannockburn, IL 60015 US License No: 2104 (eas 193

Mutant proteins that is stable and forms multimers: dominant negative effect

Only 1/16 of complexes are functional

Mutant proteins that is stable and forms multimers: dominant negative effect

Antisense oligonucleotides – Familial Amyoidosis

Nieuwe doorbraken: Antisense oligonucleotiden - Duchenne

K. Lim et al, 2017

Hemoglobinopathies

- most **common** single-gene disorders in humans
- more than 5% of the world's population is carrier of an abnormal globin gene

Hemoglobin

- 4 subunits: 2 α (like) and 2 β (like) chains
- each subunit is composed of :
 - a polypeptide chain (globin)
 - a prosthetic group (*heme*): iron-containing pigment that combines with O₂
- highly conserved structure
- Hb A (adult hemoglobin): $\alpha_2 \beta_2$

Globin switching

- expression of β -globin gene controlled by **nearby promoter** and **LCR**
- locus control region (LCR): required for the expression of any gene in the β -globin cluster
- deletions of LCR results in $\epsilon\gamma\delta\beta$ thalassemia

MUTATIONS AFFECTING THE GLOBIN CHAINS

- 1. Mutations that alter the **structure** of the globin protein
- 2. Reduced **availability** of one or more globin chains (Thalassemias)
- 3. mutations that impair the globin developmental switching

1. STRUCTURAL VARIANTS

- usually due to **point mutations** in one of the globin genes
- more than 400 abnormal hemoglobin variants have been described
- only about 50% are clinically significant
- three classes:
 - mutants that cause *hemolytic* anemia
 - mutants that alter *oxygen transport*
 - mutants that reduce the *abundance* of the globin chain (thalassemias)

FACULTEIT GENEESKUNDE EN GEZONDHEIDSWETENSCHAPPEN

Structural Variants that cause Hemolytic Anemia

- the mutant makes the Hb tetramer **unstable**
 - \rightarrow loss-of-function

e.g.: Hb Hammersmith (β -chain Phe42Ser mutation)

- the mutant gives the globin chain an unusual rigid structure

novel property mutations f.e.: sickle cell globin; HbC

Sickle Cell Disease

- HbS: first abnormal Hb detected (Glu6Val mutation in β -chain)
- severe **AR** condition
- •common in equatorial Africa; 1/600 African Americans is born with the disease
- sickle cell **trait** refers to the heterozygous state
- about 8% of African Americans are heterozygous
- heterozygotes are protected against malaria

Sickle Cell Disease

1. STRUCTURAL VARIANTS

- usually due to point mutations in one of the globin genes
- more than 400 abnormal hemoglobin variants have been described
- only about 50% are clinically significant
- three classes:
 - mutants that cause hemolytic anemia
 - mutants that alter oxygen transport
 - mutants that reduce the abundance of the globin chain (thalassemias)

Hemoglobin Structural Variants that alter oxygen transport

- <u>Hb Hyde Park</u> (β-chain His92Tyr)
 - \sim normal hemoglobin stability

iron resistant to the enzyme methemoglobin reductase (Fe^{3+} (not able to bind O_2) \rightarrow Fe²⁺).

 \rightarrow accumulation of methemoglobin \rightarrow cyanosis (usually asymptomatic)

homozygous state presumably lethal.

- <u>Hb Hammersmith</u> (β chainPhe 42 Ser) \rightarrow instable Hb, lower O2 affinity • mutations in α : β interface (<u>Hb Kempsey</u>) prevent oxigen related movement
 - \rightarrow locked in high O2 affinity state
 - → Polycythemia

1. STRUCTURAL VARIANTS

- usually due to point mutations in one of the globin genes
- more than 400 abnormal hemoglobin variants have been described
- only about 50% are clinically significant
- three classes:
 - mutants that cause hemolytic anemia
 - mutants that alter oxygen transport
 - mutants that reduce the abundance of the globin chain (thalassemias) mutations in the coding region rate of synthesis↓ severe instability of the chains.

2. HEMOGLOBIN SYNTHESIS DISORDERS (THALASSEMIAS)

- collectively the most common human single-gene disorders!
- carriers: protective against malaria
- > $\theta \alpha \lambda \alpha \sigma \sigma \alpha$ (sea): first discovered in Mediterranean area
- imbalance in α : β chain ratio
 - ↓synthesis
 - instability (cfr supra)
- ↑normal chains: damage to the RBCs (hemolytic anemia)
- \downarrow Hb synthesis \rightarrow <u>hypochromic, microcytic anemia</u>
- Dd Iron deficiency

- affect the formation of both **fetal and adult** Hb
- in the absence of α -globins:

- Hb H: β₄

- Hb Bart's: $\gamma_4]_{\mu}$
 - Homotetrameric Hb: ineffective oxygen carriers

• most commonly due to deletion of the α -globin genes

clinical condition	number of functional α–genes	α–globin gene genotype	α–chain production
Normal	4	αα/αα	100%
Silent carrier	3	$\alpha \alpha / \alpha -$	75%
α–thalassemia trait (mild anemia, microcytosis)	2	$\alpha - \alpha - or$ $\alpha \alpha / *$	50%
Hb H (β_4) disease (moderately severe hemolytic anemia	.)	α-/	25%
Hydrops fetalis (Hb Bart's γ_4) 0	— —/— — * Carriers 1	0%

• Rare forms:

- form due to the ZF deletion (named after individual ZF)
- the ATR-X syndrome

 α_2 -gene is silenced due to the generation of antisense RNAs from the truncated LUC7L gene

wild-type antisense transcripts do also exist and play a role in regulation of gene expression (f.e. X inactivation, miRNA, lnRNA)!

The ATR-X syndrome

- MR and α -thalassemia
- due to mutations in the X-linked ATRX gene
- encodes a chromatin remodeling protein (methylation)
- activates expression in *trans*
- partial loss-of-function mutations result in modest reduction of α -globin synthesis
- *somatic* (more severe) mutations in *ATRX* cause the α–thalassemia myelodysplasia syndrome (if germline: hydrops fetalis!)

The ATR-X syndrome

- Profound MR (X-L)
- MC
- Short stature
- Genital Δ
- (Mild) anemia

Erythrocytes after incubation in briljant cresyl blue. Hb H inclusions :'golf ball'

From Gibbons R. Orphanet Journal of Rare Diseases 2006;1:15

- $\downarrow\beta$ -globin production
 - <u>two β </u>-thalassemia alleles: usually thalassemia **major** (severe anemia)
 - <u>one β </u>-thalassemia allele: thalassemia **minor** (mild anemia, no clinic)
- postnatal
- precipitation of excess α -chains \rightarrow hemolysis
- low β -chain production \rightarrow hypochromic, microcytic anemia
- \uparrow HbA₂ ($\alpha_2\delta_2$) and \uparrow HbF ($\alpha_2\gamma_2$)
- >> single-base pair substitutions (rather than deletions)
- >> compound heterozygous
- simple versus complex β -thalassemia

FACULTEIT GENEESKUNDE EN GEZONDHEIDSWETENSCHAPPEN

The Molecular Basis of Simple β -Thalassemia

	Туре	Example	Phenotype	Affected Population
	DELETIONS*			
	β-globin gene deletions	619-bp deletion of the 3' end of the gene	β°	Indian
	DEFECTIVE MRNA SYNTHESIS			
>>	RNA splicing defects (see Fig. 11-12)	Abnormal acceptor site of intron 1: $AG \rightarrow GG$	β°	Black
	Promoter mutants	Mutation in the ATA box -31 -30 -29 -28 -31 -30 -29 -28 A T A A \rightarrow G T A A	β⁺	Japanese
	Abnormal RNA cap site	$A \rightarrow C$ transversion at the mRNA cap site	β+	Asian
	Polyadenylation signal defects	$AATAAA \rightarrow AACAAA$	β*	Black
	NONFUNCTIONAL MRNAS			
	Nonsense mutations	codon 39 gln → stop CAG → UAG	β°	Mediterranean (especially Sardinia)
	Frameshift mutations	codon 16 (1-bp deletion) normal trp gly lys val asn 15 16 17 18 19 UGG GGC AAG GUG AAC UGG GCA AGG UGA mutant trp ala arg stop	β°	Indian
	CODING REGION MUTATIONS THAT ALSO ALL			
	Synonymous mutations	codon 24 gly → gly GGU → GGA	β+	Black

promoter regio: GC box; CCAAT box; TATA box transcriptie: start (+cap) translatie: initiator codon; stopcodon polyadenylatiesignaal

Point mutations that cause β -thalassemia are distributed throughout the gene. They affect virtually every process required for the production of normal β -globin.

Posttranscriptional modifications of mRNA

RNA splicing mutations in β – Thalassemias (1)

Mutation destroying a normal splice acceptor site and activating a cryptic site

RNA splicing mutations in β – Thalassemias (2)

RNA splicing mutations in β – Thalassemias (3)

Mutation enhancing a cryptic splice donor site in an exon

Hb E: example of a single nucleotide substitution that affe both RNA splicing and the coding sequence

Complex β–Thalassemias

3. GLOBIN DEVELOPMENTAL SWITCHING DISORDERS

- hereditary persistence of fetal hemoglobin
- group of clinically benign conditions
- production of higher levels of Hb F than is seen in $(\delta\beta)^{\circ}$ thalassemia
- they impair the perinatal switch from γ -globin to β -globin synthesis

