Repeat expansions in neurological disorders

Universitätsmedizin Essen Universitätsklinikum Christel Depienne Institut für Humangenetik Universitätsklinikum Essen

Tandem repeats

7 - 100 bp

- Microsatellite (Short Tandem Repeat) 2 6 bp
- Minisatellite (VNTR)
- STRs have one of the highest mutational rates

- STRs 5 x 10⁻⁵ / microsatellite / generation
- SNVs 1-2 × 10^{-8} / bp / generation

 They form stable secondary structures

• They can regulate gene expression

Kristmundsdottir et al. 2023; Jónsson et al. 2017; Malik et al. 2021; Fotsing et al. 2019

Tandem repeat expansions

Repeat Expansion discovery

Adapted from Depienne & Mandel, 2021

Adapted from Depienne & Mandel, 2021

Characteristics of repeat expansions: instability

- Pure large expanded alleles are unstable (somatic mosaicism)
- Instability during transmission
- Parent of origin effect
- Mosaicism in the brain

CSH Cold Harbor Laboratory THE PREPRINT SERVER FOR BIOLOGY

Long somatic DNA-repeat expansion drives neurodegeneration in Huntington disease

Robert E. Handsaker ^{1,2,§}, Seva Kashin ^{1,2,§}, Nora M. Reed ^{1,2,§}, Steven Tan ^{1,2}, Won-Seok Lee ^{1,2}, Tara M. McDonald ^{1,2}, Kiely Morris ³, Nolan Kamitaki ^{1,2}, Christopher D. Mullally ^{1,2}, Neda Morakabati ³, Melissa Goldman ^{1,2}, Gabriel Lind ^{1,2}, Rhea Kohli ^{1,2}, Elisabeth Lawton ³, Marina Hogan ^{1,2}, Kiku Ichihara ^{1,2}, Sabina Berretta ^{1,3-5,*}, Steven A. McCarroll ^{1,2,5,*}

e.g., maternal inheritance of large expansions in *DMPK, FMR1*

paternal inheritance of large expansions in HTT

Characteristics of repeat expansions: anticipation

- Inverse correlations between age at onset and repeat number
- Expansion from one generation to the next: anticipation

Characteristics of repeat expansions: founder effects

Family adult myoclonic epilepsy

- Most expansions have a founder effect (they have occurred on a specific haplotype)
- Intermediate alleles are a reservoir of larger expansions
- Geographic distribution of specific repeat expansions

Spinocerebellar ataxia type 27B

Vegezzi et al. Lancet Neurology 2024

Familial Adult Myoclonus Epilepsy (FAME)

Neurogenetics (2008) 9:69-71 DOI 10 1007/s10048-007-0107-s

LETTER TO THE EDITORS

Refinement of the 2p11.1-q12.2 locus responsible for cortical tremor associated with epilepsy and exclusion of candidate genes

Cécile Saint-Martin · Delphine Bouteiller · Giovanni Stevanin · Cyprian Popescu · Céline Charon · Merle Ruberg · Stéphanie Baulac · Eric LeGuern · Pierre Labauge · Christel Depienne

2p11.1-q12.2 >159 genes

nature ARTICLES genetics https://doi.org/10.1038/s41588-018-0067-2

Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy

Hiroyuki Ishiura¹, Koichiro Doi², Jun Mitsui⁰, Jun Yoshimura², Miho Kawabe Matsukawa¹, Asao Fujiyama³, Yasuko Toyoshima⁴, Akiyoshi Kakita⁴, Hitoshi Takahashi⁴, Yutaka Suzuki⁵, Sumio Sugano⁶, Wei Qu², Kazuki Ichikawa², Hideaki Yurino⁷, Koichiro Higasa⁸, Shota Shibata¹, Aki Mitsue¹, Masaki Tanaka¹, Yaeko Ichikawa⁹, Yuji Takahashi¹⁰, Hidetoshi Date¹, Takashi Matsukawa¹, Junko Kanda¹, Fumiko Kusunoki Nakamoto¹, Mana Higashihara¹¹, Koji Abe¹², Ryoko Koike¹³, Mutsuo Sasagawa¹⁴, Yasuko Kuroha¹³, Naoya Hasegawa¹⁵, Norio Kanesawa¹⁶, Takayuki Kondo¹⁷, Takefumi Hitomi^{17,18}, Masayoshi Tada¹⁹, Hiroki Takano²⁰, Yutaka Saito²¹, Kazuhiro Sanpei²², Osamu Onodera¹⁹, Masatoyo Nishizawa²³, Masayuki Nakamura²⁴, Takeshi Yasuda²⁵, Yoshio Sakiyama 2², Mieko Otsuka²⁷, Akira Ueki⁴³, Ken-ichi Kaida²⁸, Jun Shimizu¹, Ritsuko Hanajima²⁹, Toshihiro Hayashi¹, Yasuo Terao³⁰, Satomi Inomata-Terada¹, Masashi Hamada¹, Yuichiro Shirota¹, Akatsuki Kubota¹, Yoshikazu Ugawa³¹, Kishin Koh³², Yoshihisa Takiyama³², Natsumi Ohsawa-Yoshida³³, Shoichi Ishiura^{33,34}, Ryo Yamasaki³⁵, Akira Tamaoka³⁶, Hiroshi Akiyama³⁷, Taisuke Otsuki³⁸, Akira Sano²⁴, Akio Ikeda³⁹, Jun Goto⁴⁰, Shinichi Morishita² and Shoji Tsuji^{® 141,42*}

2p24.3

2p23.2

2p22.1

2p16.1

2p13.2

2a12.1

2q14.1

2q22.3

2q24.1

2q31.2

2q32.3

2034

2q36.3

2q36.1

2p14

2n12

2q21.2

2008

C. Depienne, PhD* E. Magnin, MD* D. Bouteiller, MS Familial cortical myoclonic tremor 2010 G. Stevanin, PhD C. Saint-Martin, PhD with epilepsy M. Vidailhet, MD E. Apartis, MD E. Hirsch The third locus (FCMTE3) maps to 5p E. LeGuern, MD, PhD P. Labauge, MD, PhD L. Rumbach, MD, PhD Ē. • • **.** Ó Ó -7 5p15 47genes \bigcirc 2 2 3

 \rightarrow Sequencing of the candidate intervals (coding and non-coding)

 \rightarrow Short-read genome sequencing / RNAseq (lymphoblasts)

No pathogenic mutation identified

Familial Adult Myoclonus Epilepsy (FAME)

5p15.32

- 5p14.3

5p13.2

- 5q12.1

5q13.2

5q14.3

- 5q21.3

5q23.1

5q31.2

- 5q33.2

5q35.2

5p15.2

5p14.1

5p12

5q12.3

5q14.1 -

5q22.2

5q23.3

5q32

5q34

5q21.1

Neurogenetics (2008) 9:69-71 DOI 10 1007/s10048-007-0107-s

LETTER TO THE EDITORS

Refinement of the 2p11.1-q12.2 locus responsible for cortical tremor associated with epilepsy and exclusion of candidate genes

Cécile Saint-Martin · Delphine Bouteiller · Giovanni Stevanin · Cyprian Popescu · Céline Charon · Merle Ruberg · Stéphanie Baulac · Eric LeGuern · Pierre Labauge · Christel Depienne

OPEN

familial adult myoclonic epilepsy linked to

Intronic ATTTC repeat expansions in STARD7 in

2p11.1-q12.2 >159 genes

2008

nature

ARTICLE

COMMUNICATIONS

https://doi.org/10.1038/s41467-019-12671-y

chromosome 2

Familial Adult Myoclonus Epilepsy (FAME)

Adapted from Corbett et al. and Depienne et al. Epilepsia 2023

Methods to identify and/or characterize repeat expansions

Identification of tandem repeat EXPAnsions in unsolved Neurological Disorders (EXPAND)

Short read genome sequencing

- 250 short-read genomes
- phenotypes including
 - cerebellar ataxia (~60)
 - **tremor** (~30)
 - **dystonia** (~10)
 - leukencephalopathy (~10)
 - Epilepsy (~30)
 - Aicardi-syndrome (4)
 - Septo-optic dysplasia
 - Tourette syndrome (~20)
 - Motor neuron disease
 - Neurodevelopmental disorders
- Strelka (SNVs, indels), Manta (SVs)
- STR analysis

Long read nanopore sequencing

- 100 long-read genomes (/130)
- Optimization of HMW DNA extraction
- >15X, N50 > 40kb

Deutsche

RNA sequencing

Forschungsgemeinschaft

- wf-human-variation pipeline (Snakemake)
- Clair3 (SNVs, indels), Sniffles (SVs)
- Straglr (STR)
- methylation, phasing

Identification of repeat expansion from short-read genome data

✓ Requires specific bioinformatic tools in addition of standard SNV/CNV/SV detection pipelines

Tanudisastro et al. Nat Rev Genet 2024

Adapted from Dolzhenko et al. 2017

Identification of repeat expansion from short-read genome data

✓ Requires specific bioinformatic tools in addition of standard SNV/CNV/SV detection pipelines

Identification of tandem repeat EXPAnsions in unsolved Neurological Disorders (EXPAND)

Short read genome sequencing

Long read nanopore sequencing

RNA sequencing

JFG

Forschungsgemeinschaft

Deutsche

- 250 short-read genomes
- phenotypes including
 - **cerebellar ataxia** (~60)
 - **tremor** (~30)
 - dystonia (~10)
 - leukencephalopathy (~10)
 - Epilepsy (~30)
 - Aicardi-syndrome (4)
 - Septo-optic dysplasia
 - Tourette syndrome (~20)
 - Motor neuron disease
 - Neurodevelopmental disorders
- Strelka (SNVs, indels), Manta (SVs)
- STR analysis

Method-----

•

Detection of long repeat expansions from PCR-free whole-genome sequence data

Egor Dolzhenko,^{1,18} Joke J.F.A. van Vugt,^{2,18} Richard J. Shaw,^{3,4} Mitchell A. Bekritsky,³ Marka van Blitterswijk,⁵ Giuseppe Narzisi,⁶ Subramanian S. Ajay,¹ Vani Rajan,¹ Bryan R. Lajoie,¹ Nathan H. Johnson,¹ Zoya Kingsbury,³ Sean J. Humphray,³ Raymond D. Schellevis,² William J. Brands,² Matt Baker,⁵ Rosa Rademakers,⁵ Maarten Kooyman,⁷ Gijs H.P. Tazelaar,² Michael A. van Es,² Russell McLaughlin,^{8,9} William Sproviero,¹⁰ Aleksey Shatunov,¹⁰ Ashley Jones,¹⁰ Ahmad Al Khleifat,¹⁰ Alan Pittman,¹¹ Sarah Morgan,¹¹ Orla Hardiman,^{8,9} Ammar Al-Chalabi,¹⁰ Chris Shaw,¹⁰ Bradley Smith,¹⁰ Edmund J. Neo,¹⁰ Karen Morrison,¹² Pamela J. Shaw,¹³ Catherine Reeves,⁶ Lara Winterkorn,⁶ Nancy S. Wexler,^{14,17} The US–Venezuela Collaborative Research Group,¹⁶ David E. Housman,¹⁷ Christopher W. Ng,¹⁷ Alina L. Li,¹⁷ Ryan J. Taft,¹ Leonard H. van den Berg,² David R. Bentley,³ Jan H. Veldink,^{2,18} and Michael A. Eberle^{1,18} Dashnow et al. Genome Biology (2022) 23:257 https://doi.org/10.1186/s13059-022-02826-4 Genome Biology

Open Access

METHOD

STRling: a k-mer counting approach that detects short tandem repeat expansions at known and novel loci

Harriet Dashnow¹, Brent S. Pedersen^{1,2}, Laurel Hiatt¹, Joe Brown¹, Sarah J. Beecroft^{3,4}, Gianina Ravenscroft⁴, Amy J. LaCroix⁵, Phillipa Lamont⁶, Richard H. Roxburgh⁷, Miriam J. Rodrigues^{7,8}, Mark Davis⁹, Heather C. Mefford⁵, Nigel G. Laing^{4,9} and Aaron R. Quinlan^{1*}

- >10,000 repeat expansions in one genome detected using STRling
- >300 repeat expansions of motifs \geq 3 per individual
- Half of families with ataxia had a possible repeat expansion in FGF14 !

FGF14 repeat expansions (SCA27B)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Deep Intronic FGF14 GAA Repeat Expansion in Late-Onset Cerebellar Ataxia

D. Pellerin, M.C. Danzi, C. Wilke, M. Renaud, S. Fazal, M.-J. Dicaire, C.K. Scriba, C. Ashton, C. Yanick, D. Beijer, A. Rebelo, C. Rocca, Z. Jaunmuktane, J.A. Sonnen, R. Larivière, D. Genís, L. Molina Porcel, K. Choquet, R. Sakalla, S. Provost, R. Robertson, X. Allard-Chamard, M. Tétreault, S.J. Reiling, S. Nagy, V. Nishadham, M. Purushottam, S. Vengalil, M. Bardhan, A. Nalini, Z. Chen, J. Mathieu, R. Massie, C.H. Chalk, A.-L. Lafontaine, F. Evoy, M.-F. Rioux, J. Ragoussis, K.M. Boycott, M.-P. Dubé, A. Duquette, H. Houlden, G. Ravenscroft, N.G. Laing, P.J. Lamont, M.A. Saporta, R. Schüle, L. Schöls, R. La Piana, M. Synofzik, S. Zuchner, and B. Brais

Length (repeats)

Allele

100

0

Haloom Rafehi, 1,2,30 Justin Read, 3,4,30 David J. Szmulewicz, 5,6,30 Kayli C. Davies, 3,4 Penny Snell, 3 Liam G. Fearnley,^{1,2,3} Liam Scott,¹ Mirja Thomsen,⁷ Greta Gillies,³ Kate Pope,³ Mark F. Bennett,^{1,2,8} Jacob E. Munro,^{1,2} Kathie J. Ngo,⁹ Luke Chen,¹⁰ Mathew J. Wallis,^{11,12,13} Ernest G. Butler,¹⁴ Kishore R. Kumar,^{15,16,17} Kathy HC. Wu,^{18,19,20,21} Susan E. Tomlinson,^{21,22} Stephen Tisch,^{18,22} Abhishek Malhotra,²³ Matthew Lee-Archer,²⁴ Egor Dolzhenko,²⁵ Michael A, Eberle,²⁵ Leslie J, Roberts,²⁶ Brent L. Fogel,^{9,28} Norbert Brüggemann,^{7,27} Katja Lohmann,⁷ Martin B. Delatycki,^{3,4,29} Melanie Bahlo, 1, 2, 31, * and Paul J. Lockhart 3, 4, 31, *

Allele Sizing by PCR

Controls Patients

E Repeat-Length Variation among Maternal and Paternal

Meiotic Events

0.0

400 300 200

ARTICLE

Pellerin et al. NEJM 2023

Comparaison of tools and methods to detect FGF14 expansions

Identification of FGF14 expansions using an outlier approach

Positive predictive value (PPV) = TP/(TP+FP) Sensitivity = TP/(TP+FN)

- TP : true positives
- FP : false positives
- FN: false negatives

Confirmation of FGF14 expansions by targeted nanopore sequencing

Distribution of FGF14 alleles in patients and controls

Impact of flanking regions and pre-repeats

AAG & AAGGAG expansions form different secondary structures

Circular dichroism spectroscopy

Sebastian Hönes

Pellerin et al. NEJM 2022

Repeat expansions detected in EXPAND

Identification of tandem repeat EXPAnsions in unsolved Neurological Disorders (EXPAND)

Short read genome sequencing

- 250 short-read genomes
- phenotypes including
 - cerebellar ataxia (~60)
 - **tremor** (~30)
 - **dystonia** (~10)
 - leukencephalopathy (~10)
 - Epilepsy (~30)
 - Aicardi-syndrome (4)
 - Septo-optic dysplasia
 - Tourette syndrome (~20)
 - Motor neuron disease
 - Neurodevelopmental disorders
- Strelka (SNVs, indels), Manta (SVs)
- STR analysis

- 100 long-read genomes (/130)
- Optimization of HMW DNA extraction
- >15X, N50 > 40kb

wf-human-variation pipeline (Snakemake)

- Clair3 (SNVs, indels), Sniffles (SVs)
- Straglr (STR)
- methylation, phasing

DEFG Deutsche Forschungsgemeinschaft

Detection of FGF14 expansions by nanopore genome sequencing

Conclusions (1)

Conclusions (2)

Family –based approaches

Known repeat expansions

- Current tools for SR data and standard techniques limited
- Length / <u>sequence</u>
- Long-read sequencing technologies
- Repeat distributions in distinct populations (databases)

To be discovered

• Mendelian diseases / Susceptibility factors for common diseases (e.g. GWAS for nystagmus \rightarrow FGF14 expansion)