# **ADULT-ONSET NEUROLOGICAL DISORDERS**

**Bart DERMAUT** 



14/03/2025



CENTRUM MEDISCHE GENETICA GENT

# I. INTRODUCTION: RARE (NEUROLOGICAL) DISORDERS

# II. UD-PROZA

# **III. NEUROGENETICS DIAGNOSTICS**



14/03/2025







- Rare diseases = frequent: globally, 3.5-5.6% have a rare disease
- 80% genetic
  - >6000 rare diseases
  - > 1400 monogenic brain diseases
  - 50% unexplained





Psychosocial consequences for patient and family Treatment and prevention tailored to the individual patient (~20%)

# precision medicine 00

individual patient characteristics (genetics,



Belgium: around 660,000 to 880,000 cases Europe: about 27 to 36 million cases Worldwide: about 350 million cases

- Rare disease: < 1:2000 (EU), <1:1250 (US)</p>
- Rare diseases = frequent: globally, 3.5-5.6% have a rare disease
- 80% genetic
  - >6000 rare diseases
  - > 1400 monogenic brain diseases
  - 50% unexplained



14/03/2025



### Rare disease: < 1:2000 (EU), <1:1250 (US)</p>

- Rare diseases = frequent: globally, 3.5-5.6% have a rare disease
- 80% genetic
  - >6000 rare diseases
  - > 1400 monogenic brain diseases
  - 50% unexplained



### international networks

- ▶ IRDiRC
- Matchmaker Exchange
- ERNs (ERN-RND)
- SolveRD, UDNI

- Diagnostic yield NGS: 3-70 %

### NGS

Cost-efficient in pediatric cohorts Multiple pathogenic variants in 1 patient Missing heritability (WGS, epigenomics)





- Rare disease: < 1:2000 (EU), <1:1250 (US)</p>
- Rare diseases = frequent: globally, 3.5-5.6% have a rare disease
- ▶ 80% genetic
  - >6000 rare diseases
  - > 1400 monogenic brain diseases
  - 50% unexplained





- Diagnostic Odyssey
- In numbers:
- 44% are misdiagnosed
- 75% receive wrong treatment
- > 22% consulted >5 doctors
- 7% consulted >10 doctors

# diagnostics difficult

# II. UD-PROZA



14/03/2025

#### 7 /

### PrOZA

2015: Programma voor Ongediagnosticeerde Zeldzame Aandoeningen (**PrOZA**); Eng. **UD-Proza** 

Bruce Poppe, Dimitri Hemelsoet, Steven Callens, Wim Terryn

**Multidisciplinary**: genetics, neurology, general internal medicine, infectiology





### Geen diagnose? Team van topdokters schiet collega's te hulp

#### SABA VANDERERCKHOW EN LIEVEN DESMET

Vier specialisten uit verschillende disciplines gant zich aan het UZ Gent bezighouden met de onverklaarhare en vreende symptomen waar patiënter sons al jaren mee rondlepen. Een Beböche avingust

let Programma soor Omgeliagnostacerde eldrante Aandeemingen (PrOZA) inserfielen on insellere en elfrichtere digarisse. Het taam telt er artisere en grecticus, een internist, een neurosigen om interniste nefferloog. Nore Belgie inde om prinnen, in de Verenigde taten bestaat solt programma al weel langer.

ineffere diagnoses surgert', negt perifessor Physic-mollackingmotionsembetisker van het Adamte dieletes tijt in vele gevallen chronisch enslecheigend, Ze treeffen setting mensen er dans 5 op de 10.000 - maar doordate er tot ieddaarne aandoorningen rijk, hoogel het taale – # 1

inder ums sup ar soloco mute connast er tot olo addatame adoloconingen rijk, looghtek totak nral gutärsten op. In Belge alleen al ava het om 1000 tot 100 000 mersene gaar. Bij 44 procem erd ern undere dugtasse gesteld voor ie de juiste egen. Enn dagrasse stelken is is wie genafen geen sine-

care. "Maar hoe vooege het gebeurt, hoe meer Di schuele gevennijd", benadricht Popge, "Het leindar verschillende ansen inch over een dossier buigen, werkoogt de kans op nacces." He Minister van Volkogrændheid Maggie De Block #

di astistati av Tovanan de





Na eerste titel is alles mogelijk voor Gantoise, zegt Hans Vandeweghe

# OETBALBEER IS LOS'

Expertise moet je bundelen. Dit past in het Plan voor Zeldzame Ziekten

> WEECHMANS (TENTENPLITFO)

le ziekenhuiszorg, gevoneen 14. ingebed in een klasisch net utten

tenglatformits absorrathoa-6. 'tin het Plan voor Zeldiaane 6. dat melerdisaten hun boog ertise moeten hundelen', zegt renam. 'Dit part diaarin, Viel 6 dat er extra expertisecentra ind staat in de nielenbunherProfessor David Casaman (KO Lawym) onderbritgh die doelseiling, maar wird ook maaneren, Alles hangt af van beej tetam is samengesteld. Nee kleiner en hoerneer gespectielikeent, hoe groer de kans dat je patizitien meenzent op een diagenstiche ooksee die ennoolig of vertieerd is. "Bij ons, in het UZ Leuren, komen patiënien net noozeokowe of veliment val de moar demisien

algemente towendige zelektens of algemente pediatier bennen. Ze kommen dans binnen obrais wonden Aoerverwezen naar de verschiltende mutikthezig blaatte teams út diverse donstenen. De loegangsjoor is belangrijk, andar putitreenjuist wooden doorwerwezen, maar ook wonden gefihent. Nitt deveren hoefte en addatum au duide, on het gewaar bestaat dat je tijd en energie steekt in zeldaams bestaat dat je tijd en energie steekt in zeldaams

Toch in bet orn goode zaak dat de diensverleing soze enopploste gesallen wordt georganierd, stelt Casirnan. De mensen in het 12 Gest Aben in hun specifieke addomenten han sporte diesal "= 5

#### 'Bewapen rebellen om IS te stoppen'

De beartting van de honortsche Sprinder stad Palarym is niet alken een bekangrijke overwinming van EL ze konnt ook aan hoe maldelijk de strijfterachten van de fyrische presiden Awad te verslaan zijn. "We zien het leger van Awad voor enze rigen iselkaar sorter", stel Malden Oostpersegert Koert Deleuf.

Bij is servan overnigd dat allern de genutstigte rehellencolitie. die aleen hele tijdtegen Assad strijdt, Sin Sprit nogkan terugdringen. Er resten het Westen volgens Debeuf slechtstwee opties de nebellen besapensomet luchtafweergeschat of net gewechtsbiligtuigeneen no-dynaare aldbingen.

Tit durier gebeurde dat niet endat Rusland een veto vichtlaar oek Moelen rakit vilaan uitgeleken op bet Syrische eordiet. Tituliant polit sinde dien voorzichtig wie van de gematigde rebellen met hen wil printer. Jegt Debesf un

decilited biasen hat regime aan en den sundt een coop tigen Assal - Joor een overgangleider die met de gemutigde redeellen worde val skuiten - siet onderäkeeling. Het alternatief is een voortijdige val van Assal, gevolgd door een hutgenioolog met die partijent inn, gro Saudische rehelten en IS- (van 9-10-11)



The Rest Number of Market Street Street

### **UD-PrOZA**

2015: Programma voor Ongediagnosticeerde Zeldzame Aandoeningen (**PrOZA; Eng. UD-PrOZA**)

### Bruce Poppe, Dimitri Hemelsoet, Steven Callens, Wim Terryn, Bart Dermaut

Nika Schuermans, Sanne Steyaert, Filomeen Haerynck, Patrick Verloo, Arnaud Vanlander

Multidisciplinary: genetics, neurology, general internal medicine, infectiology, pediatrics, immunology

Internationally connected: Solve-RD, ERDERA





## the UD-PrOZA algorithm





Schuermans et al. **Orphanet Journal of Rare Diseases** (2022) 17:210 https://doi.org/10.1186/s13023-022-02365-y

### RESEARCH

# Shortcutting the diagnostic odyssey: the multidisciplinary Program for Undiagnosed Rare Diseases in adults (UD-PrOZA)

Nika Schuermans<sup>1,2\*†</sup>, Dimitri Hemelsoet<sup>3†</sup>, Wim Terryn<sup>4</sup>, Sanne Steyaert<sup>5</sup>, Rudy Van Coster<sup>6</sup>, Paul J. Coucke<sup>1,2</sup>, Wouter Steyaert<sup>7</sup>, Bert Callewaert<sup>1,2</sup>, Elke Bogaert<sup>1,2</sup>, Patrick Verloo<sup>6</sup>, Arnaud V. Vanlander<sup>6</sup>, Elke Debackere<sup>1,2</sup>, Jody Ghijsels<sup>1,2</sup>, Pontus LeBlanc<sup>1,2</sup>, Hannah Verdin<sup>1,2</sup>, Leslie Naesens<sup>8,9</sup>, Filomeen Haerynck<sup>8</sup>, Steven Callens<sup>5</sup>, Bart Dermaut<sup>1,2†</sup>, Bruce Poppe<sup>1,2†</sup>for UD-PrOZA





# Orphanet Journal of Rare Diseases







Nika



### Dimitri





Table 1 Patient information of all referrals, of the accepted referrals and of the patients that have been diagnosed by UD-PrOZA

|                           | All referrals<br>(n = 692) | Accepted<br>referrals<br>(n = 329) | Diagnos<br>patients<br>(n = 60) |
|---------------------------|----------------------------|------------------------------------|---------------------------------|
| Mean age (years $\pm$ SD) | $42 \pm 16$                | 40.5±16                            | 39±14                           |
| Sex (%)                   |                            |                                    |                                 |
| Male                      | 277 (41)                   | 144 (44)                           | 30 (50)                         |
| Female                    | 400 (59)                   | 183 (56)                           | 30 (50)                         |
| Referred by (%)           |                            |                                    |                                 |
| General practitioner      | 292 (46)                   | 67 (21)                            | 7 (12)                          |
| Specialist                | 348 (54)                   | 249 (79)                           | 51 (88)                         |
| Complaint (%)             |                            |                                    |                                 |
| Objectifiable             | 386 (60)                   | 285 (87)                           | 60 (100)                        |
| Not objectifiable         | 259 <b>(</b> 40 <b>)</b>   | 44 (13)                            | 0 (0)                           |





Schuermans, Hemelsoet et al, 2022





# UD-PrOZA: results July 2015 – June 2020 60 diagnoses



**GENT** 



Table 1 Patient information of all referrals, of the accepted referrals and of the patients that have been diagnosed by UD-PrOZA

| 94% >18j               | All referrals<br>(n = 692) | Accepted<br>referrals<br>(n = 329) | Diagnosed<br>patients<br>(n = 60) |
|------------------------|----------------------------|------------------------------------|-----------------------------------|
| Mean age (years±SD)    | 42±16                      | 40.5±16                            | 39±14                             |
| Sex (%)                |                            |                                    |                                   |
| Male                   | 277 (41)                   | 144 (44)                           | 30 <b>(</b> 50 <b>)</b>           |
| Female                 | 400 (59)                   | 183 (56)                           | 30 <b>(</b> 50 <b>)</b>           |
| Referred by (%)        |                            |                                    |                                   |
| General practitioner   | 292 (46)                   | 67 (21)                            | 7 (12)                            |
| Specialist             | 348 (54)                   | 249 (79)                           | 51 (88)                           |
| Complaint (%)          |                            |                                    |                                   |
| Objectifiable          | 386 (60)                   | 285 (87)                           | 60 (100)                          |
| Not objectifiable      | 259 (40)                   | 44 (13)                            | 0 (0)                             |
| Primary symptoms (%)   |                            |                                    |                                   |
| Neurologic             | 270 (42)                   | 177 (54)                           | 35 (58)                           |
| Immunologic/infectious | 133 (21)                   | 63 (19)                            | 8 (14)                            |
| Musculoskeletal        | 107 (17)                   | 20 (6)                             | 2 (3)                             |
| Rheumatologic          | 25 (4)                     | 15 (5)                             | 0 (0)                             |
| Cardiac/vascular       | 19 (3)                     | 13 (4)                             | 2 (3)                             |
| Gastrointestinal       | 18 (3)                     | 5 (2)                              | 1 (2)                             |
| Other                  | 74 (11)                    | 36 (11)                            | 12 (20)                           |



Schuermans, Hemelsoet et al, 2022







Schuermans, Hemelsoet et al, 2022





### 7 clinical diagnoses

| IDSexPhenotype/Medical historyAdditional testing54MAortic valve stenosis, third-degree<br>atrioventricular block, neurosensorial<br>deafness, axonal polyneuropathy,<br>episodic vertigo, multinodular goiterOphthalmological<br>examination: salt and pepper<br>pigmentary retinopathy, lens<br>opacities55MSyrian origin, developmental delay,<br>severe intellectual disability, small<br>stature, facial dysmorphismBlood analysis: TSH, FT3, FT4,<br>conventional karyotyping:<br>trisomy 2156FFever, skin rash, polyarthritis, myalgia,<br>pharyngitis, pericarditis, pleuritis,<br>splenomegaly, elevated ESR, CRP and<br>serum ferritin, granulocytosisBlood analysis: neutrophils,<br>ferritin, CRP57MDyspnea, cough, wheezing, allergic<br>rhinitis, eczema, erythroderma,<br>axonal peripheral polyneuropathy,<br>eosinophilia (58% lab test 2016)46XY; FIP1L1-PDGFRA fusion<br>absent58MArthritis, myalgia, urticaria, anemia,<br>abdominal pain, nausea, vomiting,<br>scleritisBlood analysis: C1q, C1q auto<br>antibodies59MProgressive muscle weakness and<br>atrophy right hand (predominantly<br>affecting C8-T1 musculature), absence<br>of sensory deficitsMRI cervical spine, mtDNA<br>sequencing/WES negative60FDiffuse musculoskeletal pain, episodic<br>fever, urticarial skin rash, and<br>malabsorption after bariatric surgeryHereditary fever gene panel<br>analysis negative, favorable<br>response to corticoid and<br>antibiotic treatment | .* |    |     |                                                                                                                                                             |                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 54MAortic valve stenosis, third-degree<br>atrioventricular block, neurosensorial<br>deafness, axonal polyneuropathy,<br>episodic vertigo, multinodular goiterOphthalmological<br>examination: salt and pepper<br>pigmentary retinopathy, lens<br>opacities55MSyrian origin, developmental delay,<br>severe intellectual disability, small<br>stature, facial dysmorphismBlood analysis: TSH, FT3, FT4,<br>conventional karyotyping:<br>trisomy 2156FFever, skin rash, polyarthritis, myalgia,<br>pharyngitis, pericarditis, pleuritis,<br>splenomegaly, elevated ESR, CRP and<br>serum ferritin, granulocytosisBlood analysis: neutrophils,<br>ferritin, CRP57MDyspnea, cough, wheezing, allergic<br>rhinitis, eczema, erythroderma,<br>axonal peripheral polyneuropathy,<br>eosinophilia (58% lab test 2016)46XY; FIP1L1-PDGFRA fusion<br>absent58MArthritis, myalgia, urticaria, anemia,<br>abdominal pain, nausea, vomiting,<br>scleritisBlood analysis: C1q, C1q auto<br>antibodies59MProgressive muscle weakness and<br>atrophy right hand (predominantly<br>affecting C8-T1 musculature), absence<br>of sensory deficitsMRI cervical spine, mtDNA<br>sequencing/WES negative60FDiffuse musculoskeletal pain, episodic<br>fever, urticarial skin rash, and<br>malabsorption after bariatric surgeryHereditary fever gene panel<br>analysis negative, favorable<br>response to corticoid and<br>antibiotic treatment                                                 |    | ID | Sex | Phenotype/Medical history                                                                                                                                   | Additional testing                                                                                               |
| 55MSyrian origin, developmental delay,<br>severe intellectual disability, small<br>stature, facial dysmorphismBlood analysis: TSH, FT3, FT4,<br>conventional karyotyping:<br>trisomy 2156FFever, skin rash, polyarthritis, myalgia,<br>pharyngitis, pericarditis, pleuritis,<br>splenomegaly, elevated ESR, CRP and<br>serum ferritin, granulocytosisBlood analysis: neutrophils,<br>ferritin, CRP57MDyspnea, cough, wheezing, allergic<br>rhinitis, eczema, erythroderma,<br>axonal peripheral polyneuropathy,<br>eosinophilia (58% lab test 2016)46XY; FIP1L1-PDGFRA fusion<br>absent58MArthritis, myalgia, urticaria, anemia,<br>abdominal pain, nausea, vomiting,<br>scleritisBlood analysis: C1q, C1q auto<br>antibodies59MProgressive muscle weakness and<br>atrophy right hand (predominantly<br>affecting C8-T1 musculature), absence<br>of sensory deficitsMRI cervical spine, mtDNA<br>sequencing/WES negative<br>analysis negative, favorable<br>response to corticoid and<br>antibiotic treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 54 | Μ   | Aortic valve stenosis, third-degree<br>atrioventricular block, neurosensorial<br>deafness, axonal polyneuropathy,<br>episodic vertigo, multinodular goiter  | Ophthalmological<br>examination: salt and pepper<br>pigmentary retinopathy, lens<br>opacities                    |
| 56FFever, skin rash, polyarthritis, myalgia,<br>pharyngitis, pericarditis, pleuritis,<br>splenomegaly, elevated ESR, CRP and<br>serum ferritin, granulocytosisBlood analysis: neutrophils,<br>ferritin, CRP57MDyspnea, cough, wheezing, allergic<br>rhinitis, eczema, erythroderma,<br>axonal peripheral polyneuropathy,<br>eosinophilia (58% lab test 2016)46XY; FIP1L1-PDGFRA fusion<br>absent58MArthritis, myalgia, urticaria, anemia,<br>abdominal pain, nausea, vomiting,<br>scleritisBlood analysis: C1q, C1q auto<br>antibodies59MProgressive muscle weakness and<br>atrophy right hand (predominantly<br>affecting C8-T1 musculature), absence<br>of sensory deficitsMRI cervical spine, mtDNA<br>sequencing/WES negative60FDiffuse musculoskeletal pain, episodic<br>fever, urticarial skin rash, and<br>malabsorption after bariatric surgeryHereditary fever gene panel<br>analysis negative, favorable<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 55 | М   | Syrian origin, developmental delay,<br>severe intellectual disability, small<br>stature, facial dysmorphism                                                 | Blood analysis: TSH, FT3, FT4,<br>conventional karyotyping:<br>trisomy 21                                        |
| 57MDyspnea, cough, wheezing, allergic<br>rhinitis, eczema, erythroderma,<br>axonal peripheral polyneuropathy,<br>eosinophilia (58% lab test 2016)46XY; FIP1L1-PDGFRA fusion<br>absent58MArthritis, myalgia, urticaria, anemia,<br>abdominal pain, nausea, vomiting,<br>scleritisBlood analysis: C1q, C1q auto<br>antibodies59MProgressive muscle weakness and<br>atrophy right hand (predominantly<br>affecting C8-T1 musculature), absence<br>of sensory deficitsMRI cervical spine, mtDNA<br>sequencing/WES negative60FDiffuse musculoskeletal pain, episodic<br>fever, urticarial skin rash, and<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 56 | F   | Fever, skin rash, polyarthritis, myalgia,<br>pharyngitis, pericarditis, pleuritis,<br>splenomegaly, elevated ESR, CRP and<br>serum ferritin, granulocytosis | Blood analysis: neutrophils,<br>ferritin, CRP                                                                    |
| 58MArthritis, myalgia, urticaria, anemia,<br>abdominal pain, nausea, vomiting,<br>scleritisBlood analysis: C1q, C1q auto<br>antibodies59MProgressive muscle weakness and<br>atrophy right hand (predominantly<br>affecting C8-T1 musculature), absence<br>of sensory deficitsMRI cervical spine, mtDNA<br>sequencing/WES negative60FDiffuse musculoskeletal pain, episodic<br>fever, urticarial skin rash, and<br>malabsorption after bariatric surgeryHereditary fever gene panel<br>analysis negative, favorable<br>response to corticoid and<br>antibiotic treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 57 | Μ   | Dyspnea, cough, wheezing, allergic<br>rhinitis, eczema, erythroderma,<br>axonal peripheral polyneuropathy,<br>eosinophilia (58% lab test 2016)              | 46XY; FIP1L1-PDGFRA fusion<br>absent                                                                             |
| 59MProgressive muscle weakness and<br>atrophy right hand (predominantly<br>affecting C8-T1 musculature), absence<br>of sensory deficitsMRI cervical spine, mtDNA<br>sequencing/WES negative60FDiffuse musculoskeletal pain, episodic<br>fever, urticarial skin rash, and<br>malabsorption after bariatric surgeryHereditary fever gene panel<br>analysis negative, favorable<br>response to corticoid and<br>antibiotic treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 58 | М   | Arthritis, myalgia, urticaria, anemia,<br>abdominal pain, nausea, vomiting,<br>scleritis                                                                    | Blood analysis: C1q, C1q auto<br>antibodies                                                                      |
| 60         F         Diffuse musculoskeletal pain, episodic         Hereditary fever gene panel           fever, urticarial skin rash, and         analysis negative, favorable           malabsorption after bariatric surgery         response to corticoid and           antibiotic treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 59 | Μ   | Progressive muscle weakness and<br>atrophy right hand (predominantly<br>affecting C8-T1 musculature), absence<br>of sensory deficits                        | MRI cervical spine, mtDNA<br>sequencing/WES negative                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 60 | F   | Diffuse musculoskeletal pain, episodic<br>fever, urticarial skin rash, and<br>malabsorption after bariatric surgery                                         | Hereditary fever gene panel<br>analysis negative, favorable<br>response to corticoid and<br>antibiotic treatment |



|            | Diagnosis                                                                            |
|------------|--------------------------------------------------------------------------------------|
| per<br>ens | Congenital rubella<br>syndrome                                                       |
| т4,        | Congenital hypothyroidism<br>secondary to trisomy 21                                 |
| 5,         | Adult Still's disease                                                                |
| on         | Primary hypereosinophilic<br>syndrome                                                |
| uto        | McDuffie syndrome<br>(hypocomplementemic<br>urticarial vasculitis)                   |
|            | Hirayama disease<br>(monomelic amyotrophy)                                           |
| el<br>le   | BADAS (Bowel Associated<br>Dermatosis Arthritis<br>Syndrome)/ Blind loop<br>syndrome |
|            |                                                                                      |

### 'Actionable secondary findings' in 7% of the exomes

| Secondary finding         | OMIM phenotype (MIM number)                       |
|---------------------------|---------------------------------------------------|
| PALB2 c.2834+1G>T         | Breast cancer, susceptibility to, AD (114480)     |
| LDLR p.Gly343Cys          | Hypercholesterolemia, familial, 1, AD/AR (143890) |
| BRCA1 p.Glu733ThrfsTer5   | Breast cancer, susceptibility to, AD (114480)     |
| <b>МИТҮН</b> р.Туr152Суs  | Adenomas, multiple colorectal, AR (608456)        |
| BRCA2 p.His2090GlnfsTer9  | Breast cancer, susceptibility to, AD (114480)     |
| CHEK2 c.444+1G>A          | Breast cancer, susceptibility to, AD (114480)     |
| CHEK2 c.1100del           | Breast cancer, susceptibility to, AD (114480)     |
| MYBPC3 p.Gly235SerfsTer74 | Left ventricular noncompaction 10, AD (615396)    |
|                           | Cardiomyopathy, hypertrophic, 4, AD/AR (115197)   |
| HOXB13 p.Gly84Glu         | Prostate cancer, hereditary, 9 (610997)           |
| ATM p.Glu522IlefsTer43    | Breast cancer, susceptibility to, AD (114480)     |
|                           | Ataxia-telangiectasia, AR (208900)                |
| HOXB13 p.Gly84Glu         | Prostate cancer, hereditary, 9 (610997)           |
| ATM p.Asp841llefsTer6     | Breast cancer, susceptibility to, AD (114480)     |
|                           | Ataxia-telangiectasia, AR (208900)                |





#### UD-PrOZA: results July 2015 – June 2020 60 diagnoses 53 genetic Dx (88%) 7 clinical Dx (12%) mtDNA Splice site Mosaic mtDNA X-linked 2% (1) 2% (1) 2% (1) 6% (4) 6% (3) Large indel AD unknown 10% (6) 28% (15) 17% (9) Missense 11% (7) 46% (29) Targeted testing 15% (9) Nonsense AD de novo 11% (7) 19% (10)

26% (14)

Frameshift 14% (9)









#### 156% negative family history

! Time between first symptoms and Dx 19 years (1-52 years)

! 3 patients with >1 rare disease (TP53+NF1 / PKD1+COL4A1 / PKD1+TTN)

! Therapeutic implications for 7 patients



Schuermans, Hemelsoet et al, 2022



7/60 (12%) diagnoses with therapeutic implications



| ID | Sex | Patient phenotype                                               | Onset     | Delay<br>(y) | Family<br>History | ΤοοΙ             | Gene(s)  | RefSeg      | Variant(s)         | ACMG criteria                            | Segregation              | OMIM phenotype                                                                              | Prevalence<br>(Orphanet) |
|----|-----|-----------------------------------------------------------------|-----------|--------------|-------------------|------------------|----------|-------------|--------------------|------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------|--------------------------|
| 4  | М   | Hypokinetic<br>dysarthria, brain<br>cysts and<br>calcifications | Adulthood | 6            | No                | Targeted testing | SNORD118 | NR_033294.1 | n.3C>T;<br>n.75A>G | PM2, PM3, PP4, PP5<br>PM2, PM3, PP4, PP5 | Compound<br>heterozygous | Leukoencephalopathy,<br>brain calcifications, and<br>cysts; autosomal recessive<br>(614561) | <1/1.000.000             |



Schuermans, Hemelsoet et al, 2022

Example 1





7/60 (12%) diagnoses with therapeutic implications



Schuermans, Hemelsoet et al, 2022



SNORD118 patient - anti-VEGF treatment with bevacizumab: reduction of the cyst

### 7/60 (12%) diagnoses with therapeutic implications



ACMG crite ID Patient phenotype Onset Delay Family Tool Gene(s) RefSeq Variant(s) Sex (y) History 10 Motor delay, Childhood 15 Yes WES BTD NM\_001281723.1 c.106G>A, p.Gly36Ser<sup>(a)</sup>; PM1, PM2, Μ autism, bilateral singleton PM3, PP4 optic neuritis c.1273T>C, **PM1, PM2** p.Cys425Arg<sup>(a)</sup> PP3, PP4



Example 2

### **Treatment with biotin supplements: improvement of vision and motor function!**

Schuermans, Hemelsoet et al, 2022

Van Iseghem et al, 2019



| eria                       | Segregation              | OMIM phenotype                                             | Prevalence<br>(Orphanet) |
|----------------------------|--------------------------|------------------------------------------------------------|--------------------------|
| , PP2, BP4,<br>, PM5, PP2, | Compound<br>heterozygous | Biotidinase deficiency;<br>autosomal recessive<br>(253260) | 1-9/100.000              |

### 4/60 (4%) diagnoses with expansion of the phenotype





| ID | Sex | Patient phenotype                                                 | Onset    | Delay<br>(y) | Family<br>History | Tool             | Gene(s) | RefSeg         | Variant(s)          | ACMG criteria              | Segregation | OMIM phenotype                                                                   | Prevalence<br>(Orphanet) |
|----|-----|-------------------------------------------------------------------|----------|--------------|-------------------|------------------|---------|----------------|---------------------|----------------------------|-------------|----------------------------------------------------------------------------------|--------------------------|
| 8  | м   | Intracerebral<br>hemorrhages,<br>paralytic ileus, skin<br>lesions | Neonatal | 19           | No                | WES<br>singleton | SGO1    | NM_001012413.3 | c.67A>G, p.Lys23Glu | PP1, PP3, PP4, PP5,<br>PM1 | Homozygous  | Chronic atrial and<br>intestinal dysrhythmia;<br>autosomal recessive<br>(616201) | <1/1.000.000             |



Schuermans, Hemelsoet et al, 2022





4/60 (4%) diagnoses with expansion of the phenotype





Schuermans, Hemelsoet et al, 2022



### Fast variant modeling in Drosophila



Schuermans, Hemelsoet et al, 2022

**GENT** 



| ре                     | View Clinical Synopses | Phenotype<br>MIM number | Inheritance |  |
|------------------------|------------------------|-------------------------|-------------|--|
| ondylocarpofacial synd | Irome LOF              | 157800                  | AD          |  |
| taphyseal dysplasia 2  | GoF                    | 617137                  | AD          |  |

Fast variant modeling in Drosophila



Schuermans, Hemelsoet et al, 2022



| ре                     | View Clinical Synopses | Phenotype<br>MIM number | Inheritance |
|------------------------|------------------------|-------------------------|-------------|
| ondylocarpofacial synd | Irome LOF              | 157800                  | AD          |
| taphyseal dysplasia 2  | GoF                    | 617137                  | AD          |

Fast variant modeling in Drosophila



Schuermans, Hemelsoet et al, 2022



| ре                     | View Clinical Synopses | Phenotype<br>MIM number | Inheritance |
|------------------------|------------------------|-------------------------|-------------|
| ondylocarpofacial synd | Irome LOF              | 157800                  | AD          |
| taphyseal dysplasia 2  | GoF                    | 617137                  | AD          |

#### Fast variant modeling in Drosophila



#### SRSF1 haploinsufficiency is responsible for a syndromic developmental disorder associated with intellectual disability

Elke Bogaert,<sup>1,2,46</sup> Aurore Garde,<sup>3,4,46</sup> Thierry Gautier,<sup>5,46</sup> Kathleen Rooney,<sup>6,7,46</sup> Yannis Duffourd,<sup>3,8</sup> Pontus LeBlanc,<sup>1,2</sup> Emma van Reempts,<sup>1,2</sup> Frederic Tran Mau-Them,<sup>3,8</sup> Ingrid M. Wentzensen,<sup>9</sup> Kit Sing Au,<sup>10,11</sup> Kate Richardson,<sup>10,11</sup> Hope Northrup,<sup>10,11</sup> Vincent Gatinois,<sup>12</sup> David Geneviève,<sup>13,14</sup> Raymond J. Louie,<sup>15</sup> Michael J. Lyons,<sup>15</sup> Lone Walentin Laulund,<sup>16</sup> Charlotte Brasch-Andersen,<sup>17,18</sup> Trine Maxel Juul,<sup>17</sup> Fatima El It,<sup>3</sup> Nathalie Marle,<sup>19</sup> Patrick Callier,<sup>3,19</sup> Raissa Relator,<sup>7</sup> Sadegheh Haghshenas,<sup>7</sup> Haley McConkey,<sup>6,7</sup> Jennifer Kerkhof,<sup>7</sup> Claudia Cesario,<sup>20</sup> Antonio Novelli,<sup>20</sup>

Bogaert et al., 2023, The American Journal of Human Genetics 110, 790-808 May 4, 2023 © 2023 The Authors. https://doi.org/10.1016/j.ajhg.2023.03.016



Schuermans, Hemelsoet et al, 2022



Dr. Elke Bogaert





(Author list continued on next page)



Solving the Unsolved Rare Diseases

#### **3 novel monogenic disease genes**

1.

**GENT** 

UNIVERSITEIT

The American Journal of Human Genetics 103, 245-260, August 2, 2018 245

ARTICLE

#### IRF2BPL Is Associated with Neurological Phenotypes

Paul C. Marcogliese,<sup>1,25</sup> Vandana Shashi,<sup>2,25</sup> Rebecca C. Spillmann,<sup>2</sup> Nicholas Stong,<sup>3</sup> Jill A. Rosenfeld,<sup>1</sup> Mary Kay Koenig,<sup>4</sup> Julián A. Martínez-Agosto,<sup>5,6,7</sup> Matthew Herzog,<sup>5</sup> Agnes H. Chen,<sup>8</sup> Patricia I. Dickson,<sup>8</sup> Henry J. Lin,<sup>8</sup> Moin U. Vera,<sup>8</sup> Noriko Salamon,<sup>9</sup> John M. Graham, Jr.,<sup>6</sup> Damara Ortiz,<sup>10</sup> Elena Infante,<sup>10</sup> Wouter Steyaert,<sup>11</sup> Bart Dermaut,<sup>11</sup> Bruce Poppe,<sup>11</sup> Hyung-Lok Chung,<sup>1</sup> Zhongyuan Zuo,<sup>1</sup> Pei-Tseng Lee,<sup>1</sup> Oguz Kanca,<sup>1</sup> Fan Xia,<sup>1</sup> Yaping Yang,<sup>1</sup> Edward C. Smith,<sup>12</sup> Joan Jasien,<sup>12</sup> Sujay Kansagra,<sup>12</sup> Gail Spiridigliozzi,<sup>13</sup> Mays El-Dairi,<sup>14</sup> Robert Lark,<sup>15</sup> Kacie Riley,<sup>2</sup> Dwight D. Koeberl,<sup>2</sup> Katie Golden-Grant,<sup>16</sup> Program for Undiagnosed Diseases (UD-PrOZA), Undiagnosed Diseases Network, Shinya Yamamoto, 1, 17, 18, 19 Michael F. Wangler, 1, 17, 18 Ghayda Mirzaa,<sup>20,21</sup> Dimitri Hemelsoet,<sup>22</sup> Brendan Lee,<sup>1</sup> Stanley F. Nelson,<sup>5</sup> David B. Goldstein,<sup>3</sup> Hugo J. Bellen, 1,17,18,19,23,\* and Loren D.M. Pena<sup>2,24,\*</sup>

Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-offunction alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.



Article

#### Loss of phospholipase PLAAT3 causes a mixed lipodystrophic and neurological syndrome due to impaired PPARy signaling

Received: 22 December 2

Accepted: 16 September

Published online: 02 Novem Check for updates

**3.** ACMSD: A.R. metabole aandoening, in uitwerking

aminocarboxymuconate-semialdehyde-decarboxylase

#### nature genetics

https://doi.org/10.1038/s41588-023-01535-3

Schuermans, El Chehadeh, Hemelsoet, Gautheron et al, 2023

| A list of authors and their affiliations appears at the end of the paper                          |
|---------------------------------------------------------------------------------------------------|
| _                                                                                                 |
| Phospholipase A/acyltransferase 3 (PLAAT3) is a phospholipid-modifying                            |
| enzyme predominantly expressed in neural and white adipose tissue                                 |
| <ul> <li>(WAT). It is a potential drug target for metabolic syndrome, as <i>Plaat3</i></li> </ul> |
| deficiency in mice protects against diet-induced obesity. We identified seven                     |
| patients from four unrelated consanguineous families, with homozygous                             |
| loss-of-function variants in PLAAT3, who presented with a lipodystrophy                           |
| syndrome with loss of fat varying from partial to generalized and associated                      |
| with metabolic complications, as well as variable neurological features                           |
| including demyelinating neuropathy and intellectual disability. Multi-omics                       |
| analysis of mouse <i>Plaat3<sup>-/-</sup></i> and patient-derived WAT showed enrichment           |
| of arachidonic acid-containing membrane phospholipids and a strong                                |
| decrease in the signaling of peroxisome proliferator-activated receptor                           |
| gamma (PPARy), the master regulator of adipocyte differentiation.                                 |
| Accordingly, CRISPR-Cas9-mediated PLAAT3 inactivation in human adipose                            |
| stem cells induced insulin resistance, altered adipocyte differentiation                          |
| with decreased lipid droplet formation and reduced the expression of                              |
| adipogenic and mature adipocyte markers, including PPARy, These findings                          |
| establish PLAAT3 deficiency as a hereditary lipodystrophy syndrome with                           |
| neurological manifestations, caused by a PPARy-dependent defect in WAT                            |
| differentiation and function.                                                                     |
|                                                                                                   |

#### **3 novel monogenic disease genes**

1.

ΠΠΠ

**GENT** 

**UNIVERSITEIT** 

The American Journal of Human Genetics 103, 245-260, August 2, 2018 245

Hugo J. Bellen, 1,17,18,19,23,\* and Loren D.M. Pena<sup>2,24,\*</sup>

IRF2BPL Is Associated with Neurological Phenotypes

Mary Kay Koenig,<sup>4</sup> Julián A. Martínez-Agosto,<sup>5,6,7</sup> Matthew Herzog,<sup>5</sup> Agnes H. Chen,<sup>8</sup>

Undiagnosed Diseases Network, Shinya Yamamoto, 1, 17, 18, 19 Michael F. Wangler, 1, 17, 18

Patricia I. Dickson,<sup>8</sup> Henry J. Lin,<sup>8</sup> Moin U. Vera,<sup>8</sup> Noriko Salamon,<sup>9</sup> John M. Graham, Jr.,<sup>6</sup>

Zhongyuan Zuo,<sup>1</sup> Pei-Tseng Lee,<sup>1</sup> Oguz Kanca,<sup>1</sup> Fan Xia,<sup>1</sup> Yaping Yang,<sup>1</sup> Edward C. Smith,<sup>12</sup> Joan Jasien,<sup>12</sup> Sujay Kansagra,<sup>12</sup> Gail Spiridigliozzi,<sup>13</sup> Mays El-Dairi,<sup>14</sup> Robert Lark,<sup>15</sup> Kacie Riley,<sup>2</sup>

Dwight D. Koeberl,<sup>2</sup> Katie Golden-Grant,<sup>16</sup> Program for Undiagnosed Diseases (UD-PrOZA),

Ghayda Mirzaa,<sup>20,21</sup> Dimitri Hemelsoet,<sup>22</sup> Brendan Lee,<sup>1</sup> Stanley F. Nelson,<sup>5</sup> David B. Goldstein,<sup>3</sup>

#### ARTICLE

#### 2. nature genetics

#### Article

#### Loss of phospholipase PLAAT3 causes a mixed lipodystrophic and neurological syndrome due to impaired PPARy signaling



Paul C. Marcogliese,<sup>1,25</sup> Vandana Shashi,<sup>2,25</sup> Rebecca C. Spillmann,<sup>2</sup> Nicholas Stong,<sup>3</sup> Jill A. Rosenfeld,<sup>1</sup>

Damara Ortiz,<sup>10</sup> Elena Infante,<sup>10</sup> Wouter Steyaert,<sup>11</sup> Bart Dermaut,<sup>11</sup> Bruce Poppe,<sup>11</sup> Hyung-Lok Chung,<sup>1</sup>

### **3.** ACMSD: A.R. metabole aandoening, in uitwerking

aminocarboxymuconate-semialdehyde-decarboxylase



https://doi.org/10.1038/s41588-023-01535-3

Schuermans, El Chehadeh, Hemelsoet, Gautheron et al, 2023





Andy Willaert



Paul Coucke

#### 3 novel monogenic disease genes

|    | Name                                                                                            | Referred patients | Monocentric/<br>multicentric | Accepted<br>patients* | % of<br>18y     | patients <    | Diagnostic rate | Phenotypes                                                   |
|----|-------------------------------------------------------------------------------------------------|-------------------|------------------------------|-----------------------|-----------------|---------------|-----------------|--------------------------------------------------------------|
| 1. | Initiative on Rare and<br>Undiagnosed Disease<br>in Japan (IRUD)                                | 5359              | Multicentric                 | 4205                  | NA              |               | 42.9%           | Diverse                                                      |
| 2. | Undiagnosed Disease<br>Network (UDN)                                                            | 1519              | Multicentric                 | 601                   | 57%             |               | 35%             | Diverse                                                      |
| 3. | Program for undiag-<br>nosed rare diseases<br>(UD-PrOZA)                                        | 692               | Monocentric                  | 329                   | 6.7%            |               | 18%             | Diverse                                                      |
| 4. | Singapore Undi-<br>agnosed Disease<br>Program                                                   | NA                | Multicentric                 | 196                   | 90%             |               | 37.2%           | Global developmen-<br>tal delay/ Congenital<br>malformations |
| 5. | The Korean undi-<br>agnosed diseases<br>program (KUDP)                                          | NA                | Multicentric                 | 72                    | 94.8%           |               | 38.9%           | Diverse                                                      |
|    | SpainUDP                                                                                        | NA                | Multicentric                 | 30                    | 74.1%           |               | 67%             | Diverse                                                      |
| 6. | The Italian Undiag-<br>nosed Rare Diseases<br>Network (IURDN)                                   | 110               | Multicentric                 | 13                    | 31% (9<br>onset | 92%<br>< 18y) | 53.8%           | Diverse                                                      |
| 7. | Undiagnosed<br>Diseases Program<br>– Western Australia<br>(UDP-WA)                              | NA                | Multicentric                 | NA                    | NA              |               | NA              | NA                                                           |
| 8. | National Network to<br>Collaborate on Diag-<br>nosis and Treatment<br>of Rare Diseases<br>China | NA                | Multicentric                 | NA                    | NA              |               | NA              | NA                                                           |



Schuermans, Hemelsoet et al, 2022



| Reference                   |  |
|-----------------------------|--|
| Takahashi et al. [15]       |  |
| Splinter et al. [14]        |  |
| This study                  |  |
| Bhatia et al. [16]          |  |
| Kim et al. [17]             |  |
| López-Martín et al.<br>[18] |  |
| Salvatore et al. [19]       |  |
| Baynam et al. [46]          |  |
| Ren et al. [47]             |  |
|                             |  |

# **III. NEUROGENETICS DIAGNOSTICS**



14/03/2025

#### **RESEARCH ARTICLE OPEN ACCESS**

### **Exome Sequencing and Multigene Panel Testing in** 1,411 Patients With Adult-Onset Neurologic Disorders

Nika Schuermans, MD, Hannah Verdin, PhD, Jody Ghijsels, BSc, Madeleine Hellemans, MD, Elke Debackere, BSc, Elke Bogaert, PhD, Sofie Symoens, PhD, Leslie Naesens, MD, Elien Lecomte, MD, David Crosiers, MD, PhD, Bruno Bergmans, MD, PhD, Kristof Verhoeven, MD, Bruce Poppe, MD, PhD, Guy Laureys, MD, PhD, Sarah Herdewyn, MD, PhD, Tim Van Langenhove, MD, PhD, Patrick Santens, MD, PhD, Jan L. De Bleecker, MD, PhD, Dimitri Hemelsoet, MD, and Bart Dermaut, MD, PhD, for Program for Undiagnosed Rare Diseases (UD-PrOZA)

Neurol Genet 2023;9:e200071. doi:10.1212/NXG.00000000000000071

retrospective study: evaluation of all patients for whom one (96%) or more than one (4%) of the 7 'neuro gene panels' were requested between January 2019 and April 2022



Schuermans et al, 2023

#### Correspondence

Dr. Schuermans nika.schuermans@ugent.be

# **Neurogenetics diagnostics: results January 2019 –** H9.1-OP2-B26: Genpanel Leukodystrophy, in voege op 24/08/2020

|        |                | Leukodystrophy panel                |  |
|--------|----------------|-------------------------------------|--|
| versie | V2 (265 genen) | Centrum voor Medische Genetica Gent |  |

H9.1-OP2-B25: Genpanel Ataxia Spasticity, in voege op 24/08/2020



H9.1-OP2-B27: Genpanel Movement Disorders, in voege op 24/08/2020

|        | Movement Disorders panel |                                     |  |
|--------|--------------------------|-------------------------------------|--|
| versie | V2 (269 genen)           | Centrum voor Medische Genetica Gent |  |

H9.1-OP2-B28: Genpanel Paroxysmal Episodic Disorders, in voege op 24/08/2020

| Paroxysmal Episodic Disorders panel |               |                                     |  |
|-------------------------------------|---------------|-------------------------------------|--|
| versie                              | V2 (53 genen) | Centrum voor Medische Genetica Gent |  |

H9.1-OP2-B29: Genpanel PME, 16-Oct-2018, in voege op 17/10/2018

|        |                           | PME panel                           |
|--------|---------------------------|-------------------------------------|
| versie | 16-Oct-2018<br>(34 genen) | Centrum voor Medische Genetica Gent |

H9.1-OP2-B30: Genpanel NBIA, 16-Oct-2018, in voege op 17/10/2018

|        |                           | NBIA panel                          |
|--------|---------------------------|-------------------------------------|
| versie | 16-Oct-2018<br>(16 genen) | Centrum voor Medische Genetica Gent |

H9.1-OP2-B44: Genpanel ALS, v3 in voege op 11/04/2023











#### **Ataxia Spasticity**

Gene panel

#### Gene panel information

| Gene panel      | ne panel Ataxia Spasticity |            |                         |
|-----------------|----------------------------|------------|-------------------------|
| Version         |                            | 3          |                         |
| Total genes     |                            | 508        |                         |
| Activation date |                            | Tuesday 1  | 2 december 2023         |
| Publisher       |                            | Center for | Medical Genetics, Ghent |

### Panel composition based on Genomics England Panelapp, OMIM, PubMed



! Thnx Dr. Hannah Verdin

|                                                          | Total patient<br>cohort (%) |                    |     |
|----------------------------------------------------------|-----------------------------|--------------------|-----|
| 93% >18 yrs →                                            | 1,411                       |                    |     |
| ge (y) (mean ± SD)                                       | 51 ± 20                     |                    |     |
| Younger than 18                                          | 97 (7)                      |                    |     |
| Aged 18 or older                                         | 1,314 (93)                  |                    |     |
| ex                                                       |                             |                    |     |
| Male                                                     | 669 (47)                    |                    |     |
| Female                                                   | 742 (53)                    |                    |     |
| ene panel                                                |                             |                    |     |
| Leukoencephalopathy                                      | 535 (38)                    |                    |     |
| Ataxia spasticity                                        | 365 (26)                    | 7 1 1 1 70         | _   |
| Movement disorders                                       | 378 (27)                    | 7 panels: total 72 | 5 g |
| Paroxysmal episodic disorders                            | 99 (7)                      | neurological diso  | rde |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       |                    |     |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 250 different requ | ues |
| Amyotrophic lateral sclerosis (ALS)                      | 16 ( <b>1</b> )             |                    |     |

Schuermans et al, 2023

**GENT** 

**UNIVERS** 

neuromuscular diseases



#### s associated with Mendelian

(mainly neurologists)

neuropathies, myopathies,

|                                                          | Total patient<br>cohort (%) | Diagnosed<br>patients (%) |
|----------------------------------------------------------|-----------------------------|---------------------------|
| N                                                        | 1,411                       | 144                       |
| Age (y) (mean ± SD)                                      | 51 ± 20                     | 50 ± 19                   |
| Younger than 18                                          | 97 (7)                      | 10 (7)                    |
| Aged 18 or older                                         | 1,314 (93)                  | 134 (93)                  |
| Sex                                                      |                             |                           |
| Male                                                     | 669 (47)                    | 73 (51)                   |
| Female                                                   | 742 (53)                    | 71 (49)                   |
| iene panel                                               |                             |                           |
| Leukoencephalopathy                                      | 535 (38)                    | 44 (30)                   |
| Ataxia spasticity                                        | 365 (26)                    | 70 (49)                   |
| Movement disorders                                       | 378 (27)                    | 22 (15)                   |
| Paroxysmal episodic disorders                            | 99 (7)                      | 8 (6)                     |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       | 0 (0)                     |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 0 (0)                     |
| Amyotrophic lateral sclerosis (ALS)                      | 16 (1)                      | 0 (0)                     |

Total diagnostic yield 144/1411 = 10%





**GENT** 

**UNIVERSITEIT** 



Jody Ghijsels

| Table 1         Description of the Patient               | ent Cohort                  |                           |         |      |                   |
|----------------------------------------------------------|-----------------------------|---------------------------|---------|------|-------------------|
|                                                          | Total patient<br>cohort (%) | Diagnosed<br>patients (%) |         |      |                   |
| N                                                        | 1,411                       | 144                       | > Total | diag | nostic yield      |
| Age (y) (mean ± SD)                                      | 51 ± 20                     | 50 ± 19                   |         | ·    | -                 |
| Younger than 18                                          | 97 (7)                      | 10 (7)                    |         |      |                   |
| Aged 18 or older                                         | 1,314 (93)                  | 134 <mark>(</mark> 93)    |         |      |                   |
| Sex                                                      |                             |                           |         |      |                   |
| Male                                                     | 669 (47)                    | 73 (51)                   |         |      |                   |
| Female                                                   | 742 (53)                    | 71 (49)                   |         | Paro | xysmal episodic d |
| Gene panel                                               |                             |                           |         |      |                   |
| Leukoencephalopathy                                      | 535 (38)                    | 44 (30)                   |         |      | Movement d        |
| Ataxia spasticity                                        | 365 (26)                    | 70 (49)                   |         |      | Leukoencepha      |
| Movement disorders                                       | 378 (27)                    | 22 (15)                   |         |      | Ataxia s          |
| Paroxysmal episodic disorders                            | 99 (7)                      | 8 (6)                     | -       |      | , itania s        |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       | 0 (0)                     |         |      |                   |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 0 (0)                     |         | -    |                   |
| Amyotrophic lateral sclerosis (ALS)                      | 16 (1)                      | 0 (0)                     |         |      |                   |
|                                                          |                             |                           |         |      |                   |



**GENT** 



### 144/1411 = **10%**



|                                                          | Total patient<br>cohort (%) | Diagnosed<br>patients (%) |
|----------------------------------------------------------|-----------------------------|---------------------------|
| N                                                        | 1,411                       | 144                       |
| Age (y) (mean ± SD)                                      | 51 ± 20                     | 50 ± 19                   |
| Younger than 18                                          | 97 (7)                      | 10 (7)                    |
| Aged 18 or older                                         | 1,314 (93)                  | 134 (93)                  |
| Sex                                                      |                             |                           |
| Male                                                     | 669 (47)                    | 73 (51)                   |
| Female                                                   | 742 (53)                    | 71 <b>(</b> 49)           |
| Gene panel                                               |                             |                           |
| Leukoencephalopathy                                      | 535 (38)                    | 44 (30)                   |
| Ataxia spasticity                                        | 365 (26)                    | 70 (49)                   |
| Movement disorders                                       | 378 (27)                    | 22 (15)                   |
| Paroxysmal episodic disorders                            | 99 (7)                      | 8 (6)                     |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       | 0 (0)                     |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 0 (0)                     |
| Amyotrophic lateral sclerosis (ALS)                      | 16 (1)                      | 0 (0)                     |

### Total diagnostic yield 144/1411 = 10%





47% positive family history, first symptoms average 37 yeras, average diagnostic delay 14 years

Jody Ghijsels

Schuermans et al, 2023

**GENT** 

UNIVERSITEIT

|                                                          | Total patient<br>cohort (%) | Diagnosed<br>patients (%) |
|----------------------------------------------------------|-----------------------------|---------------------------|
| N                                                        | 1,411                       | 144                       |
| Age (y) (mean ± SD)                                      | 51 ± 20                     | 50 ± 19                   |
| Younger than 18                                          | 97 (7)                      | 10 (7)                    |
| Aged 18 or older                                         | 1,314 (93)                  | 134 (93)                  |
| Sex                                                      |                             |                           |
| Male                                                     | 669 (47)                    | 73 (51)                   |
| Female                                                   | 742 (53)                    | 71 (49)                   |
| Gene panel                                               |                             |                           |
| Leukoencephalopathy                                      | 535 (38)                    | 44 (30)                   |
| Ataxia spasticity                                        | 365 (26)                    | 70 <b>(</b> 49 <b>)</b>   |
| Movement disorders                                       | 378 (27)                    | 22 (15)                   |
| Paroxysmal episodic disorders                            | 99 (7)                      | 8 (6)                     |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       | 0 (0)                     |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 0 (0)                     |
| Amyotrophic lateral sclerosis (ALS)                      | 16 (1)                      | 0 (0)                     |





#### **UNIVERSITEIT GENT**

Schuermans et al, 2023

|                                                          | Total patient<br>cohort (%) | Diagnosed<br>patients (%) |
|----------------------------------------------------------|-----------------------------|---------------------------|
| N                                                        | 1,411                       | 144                       |
| Age (y) (mean ± SD)                                      | 51 ± 20                     | 50 ± 19                   |
| Younger than 18                                          | 97 (7)                      | 10 (7)                    |
| Aged 18 or older                                         | 1,314 (93)                  | 134 (93)                  |
| Sex                                                      |                             |                           |
| Male                                                     | 669 (47)                    | 73 (51)                   |
| Female                                                   | 742 (53)                    | 71 (49)                   |
| Gene panel                                               |                             |                           |
| Leukoencephalopathy                                      | 535 (38)                    | 44 (30)                   |
| Ataxia spasticity                                        | 365 (26)                    | 70 (49)                   |
| Movement disorders                                       | 378 (27)                    | 22 (15)                   |
| Paroxysmal episodic disorders                            | 99 (7)                      | 8 (6)                     |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       | 0 (0)                     |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 0 (0)                     |
| Amyotrophic lateral sclerosis (ALS)                      | 16 (1)                      | 0 (0)                     |





#### **UNIVERSITEIT GENT**



|                                                          | Total patient<br>cohort (%) | Diagnosed<br>patients (%) |
|----------------------------------------------------------|-----------------------------|---------------------------|
| N                                                        | 1,411                       | 144                       |
| Age (y) (mean ± SD)                                      | 51 ± 20                     | 50 ± 19                   |
| Younger than 18                                          | 97 (7)                      | 10 <b>(</b> 7)            |
| Aged 18 or older                                         | 1,314 (93)                  | 134 (93)                  |
| Sex                                                      |                             |                           |
| Male                                                     | 669 (47)                    | 73 <mark>(</mark> 51)     |
| Female                                                   | 742 (53)                    | 71 (49)                   |
| Gene panel                                               |                             |                           |
| Leukoencephalopathy                                      | 535 (38)                    | 44 (30)                   |
| Ataxia spasticity                                        | 365 (26)                    | 70 (49)                   |
| Movement disorders                                       | 378 (27)                    | 22 (15)                   |
| Paroxysmal episodic disorders                            | 99 (7)                      | 8 (6)                     |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       | 0 (0)                     |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 0 (0)                     |
| Amyotrophic lateral sclerosis (ALS)                      | 16(1)                       | 0 (0)                     |





#### **UNIVERSITEIT GENT**



|                                                          | Total patient<br>cohort (%) | Diagnosed<br>patients (%) |
|----------------------------------------------------------|-----------------------------|---------------------------|
| N                                                        | 1,411                       | 144                       |
| Age (y) (mean ± SD)                                      | 51 ± 20                     | 50 ± 19                   |
| Younger than 18                                          | 97 (7)                      | 10 (7)                    |
| Aged 18 or older                                         | 1,314 (93)                  | 134 (93)                  |
| Sex                                                      |                             |                           |
| Male                                                     | 669 (47)                    | 73 (51)                   |
| Female                                                   | 742 (53)                    | 71 (49)                   |
| Gene panel                                               |                             |                           |
| Leukoencephalopathy                                      | 535 (38)                    | 44 (30)                   |
| Ataxia spasticity                                        | 365 (26)                    | 70 (49)                   |
| Movement disorders                                       | 378 (27)                    | 22 (15)                   |
| Paroxysmal episodic disorders                            | 99 (7)                      | 8 (6)                     |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       | 0 (0)                     |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 0 (0)                     |
| Amyotrophic lateral sclerosis (ALS)                      | 16(1)                       | 0 (0)                     |

### Total diagnostic yield 144/1411 = 10%



cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS): homozygosity for SNP rs2066782, in linkagedisequilibrium with the intronic pathogenic pentanucleotide repeat expansion in RFC1,

Schuermans et al, 2023

**GENT** 

**UNIVERSITEIT** 



|                                                          | Total patient<br>cohort (%) | Diagnosed<br>patients (%) |
|----------------------------------------------------------|-----------------------------|---------------------------|
| N                                                        | 1,411                       | 144                       |
| Age (y) (mean ± SD)                                      | 51 ± 20                     | 50 ± 19                   |
| Younger than 18                                          | 97 (7)                      | 10 (7)                    |
| Aged 18 or older                                         | 1,314 (93)                  | 134 (93)                  |
| Sex                                                      |                             |                           |
| Male                                                     | 669 (47)                    | 73 (51)                   |
| Female                                                   | 742 (53)                    | 71 (49)                   |
| Gene panel                                               |                             |                           |
| Leukoencephalopathy                                      | 535 (38)                    | 44 (30)                   |
| Ataxia spasticity                                        | 365 (26)                    | 70 (49)                   |
| Movement disorders                                       | 378 (27)                    | 22 (15)                   |
| Paroxysmal episodic disorders                            | 99 (7)                      | 8 (6)                     |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       | 0 (0)                     |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 0 (0)                     |
| Amyotrophic lateral sclerosis (ALS)                      | 16 (1)                      | 0 (0)                     |





#### **UNIVERSITEIT GENT**

Schuermans et al, 2023



|                                                          | Total patient<br>cohort (%) | Diagnosed<br>patients (%) |
|----------------------------------------------------------|-----------------------------|---------------------------|
| N                                                        | 1,411                       | 144                       |
| Age (y) (mean ± SD)                                      | 51 ± 20                     | 50 ± 19                   |
| Younger than 18                                          | 97 (7)                      | 10 (7)                    |
| Aged 18 or older                                         | 1,314 (93)                  | 134 (93)                  |
| Sex                                                      |                             |                           |
| Male                                                     | 669 (47)                    | 73 (51)                   |
| Female                                                   | 742 (53)                    | 71 (49)                   |
| Gene panel                                               |                             |                           |
| Leukoencephalopathy                                      | 535 (38)                    | 44 (30)                   |
| Ataxia spasticity                                        | 365 (26)                    | 70 (49)                   |
| Movement disorders                                       | 378 (27)                    | 22 (15)                   |
| Paroxysmal episodic disorders                            | 99 (7)                      | 8 (6)                     |
| Progressive myoclonic epilepsy<br>(PME)                  | 7 (0)                       | 0 (0)                     |
| Neurodegeneration with brain<br>iron accumulation (NBIA) | 11 (1)                      | 0 (0)                     |
| Amyotrophic lateral sclerosis (ALS)                      | 16(1)                       | 0 (0)                     |





#### **UNIVERSITEIT GENT**











0.072 >0.070

CADD: 25.600

### **Conclusions:**

- First study with large cohort (n>1000) on utility of WES in an adult neurological population
- overall yield 10%, ataxia/spasticity panel highest yield (19%)
- diagnostics is complex:

1. 60% A.D. vs 46% positieve family history: reduced and age-dependent penetrance, differences in expressivity

- 2. clinical presentation often the same as in sporadic forms (eg Parkinson, Alzheimer, ALS)
- 3. Molecular: repeat expansions, mtDNA, non-coding variants (b.v; POLR3A c.1909+22G>A)
- 4. Class 3 variants: often no segregation



Schuermans et al, 2023



### Thanks !

RESEARCH ARTICLE

**OPEN ACCESS** 

### **Exome Sequencing and Multigene Panel Testing in** 1,411 Patients With Adult-Onset Neurologic Disorders

Nika Schuermans, MD, Hannah Verdin, PhD, Jody Ghijsels, BSc, Madeleine Hellemans, MD, Elke Debackere, BSc, Elke Bogaert, PhD, Sofie Symoens, PhD, Leslie Naesens, MD, Elien Lecomte, MD, David Crosiers, MD, PhD, Bruno Bergmans, MD, PhD, Kristof Verhoeven, MD, Bruce Poppe, MD, PhD, Guy Laureys, MD, PhD, Sarah Herdewyn, MD, PhD, Tim Van Langenhove, MD, PhD, Patrick Santens, MD, PhD, Jan L. De Bleecker, MD, PhD, Dimitri Hemelsoet, MD, and Bart Dermaut, MD, PhD, for Program for Undiagnosed Rare Diseases (UD-PrOZA)

Schuermans et al.

Neurol Genet 2023;9:e200071. doi:10.1212/NXG.000000000000000071

Orphanet Journal of Rare Diseases (2022) 17:210 https://doi.org/10.1186/s13023-022-02365-y



**GENT** 



Koning Boudewijnstichting Samen werken aan een betere samenleving

#### RESEARCH

### Shortcutting the diagnostic odyssey: the multidisciplinary Program for Undiagnosed Rare Diseases in adults (UD-PrOZA)

Bart Dermaut<sup>1,2†</sup>, Bruce Poppe<sup>1,2†</sup>for UD-PrOZA

#### Correspondence

Dr. Schuermans nika.schuermans@ugent.be

#### Orphanet Journal of Rare Diseases

#### **Open Access**



Nika Schuermans<sup>1,2\*†</sup>, Dimitri Hemelsoet<sup>3†</sup>, Wim Terryn<sup>4</sup>, Sanne Steyaert<sup>5</sup>, Rudy Van Coster<sup>6</sup>, Paul J. Coucke<sup>1,2</sup>, Wouter Steyaert<sup>7</sup>, Bert Callewaert<sup>1,2</sup>, Elke Bogaert<sup>1,2</sup>, Patrick Verloo<sup>6</sup>, Arnaud V. Vanlander<sup>6</sup>, Elke Debackere<sup>1,2</sup>, Jody Ghijsels<sup>1,2</sup>, Pontus LeBlanc<sup>1,2</sup>, Hannah Verdin<sup>1,2</sup>, Leslie Naesens<sup>8,9</sup>, Filomeen Haerynck<sup>8</sup>, Steven Callens<sup>5</sup>,

### https://www.ugent.be/schenken/nl/hoe-steunen/steun-een-fonds/fonds-alzheimer.htm



#### Op deze pagina

- → Een gift aan Fonds Alzheimer en Neurodegeneratieve Aandoeningen?
- $\rightarrow$  Meer info over het fonds?
- → Meer info over het onderzoek?
- → Wat kan ik nog doen?
- → Contacteer ons

### Fonds Alzheimer en Neurodegeneratieve Aandoeningen

Mede door de veroudering van de bevolking zal het aantal Alzheimer patiënten in de toekomst sterk toenemen. Niet enkel bij ouderen, maar ook bij jong volwassenen. We weten ondertussen dat er een genetische component is, maar ons begrip van de ziekte, het ontstaan en de behandeling ervan zijn nog zeer beperkt.

De ervaren teams van prof. dr. Bart Dermaut en dr. Tim Van Langenhove hopen hier verandering in te brengen. Ze specialiseren zich onder meer in de genetische analyse en het klinisch-diagnostisch onderzoek van deze ziekte en aanverwante, neurodegeneratieve aandoeningen. Het Fonds stelt hen in staat om snellere en grotere stappen te nemen in hun onderzoek.

#### Een gift aan Fonds Alzheimer en Neurodegeneratieve Aandoeningen?

Uw gift aan het Fonds Alzheimer draagt bij aan een beter begrip van neurodegeneratieve aandoeningen zoals de ziekte van Alzheimer, zodat we die in de toekomst kunnen genezen.

Een gift van € 100 wordt bijvoorbeeld gebruikt om de toxische eiwitten in cellen van demente patiënten te kleuren of om bepaalde stoffen in het bloed van demente patiënten op te meten. Met een gift van € 500 wordt er een vliegenmodel gemaakt om neurologische ziekten te bestuderen of kan er een nieuwe soort hersenscan bij patiënten worden afgenomen. Met een gift van € 1.000 kan men de genetische fout bepalen die dementie veroorzaakt.



 $\rightarrow$  Ik doe een online gift

Aanmelden Đ 🛛 English homepage

Zoek



