

Network
 Hematological
 Diseases (ERN EuroBloodNet)

Haemoglobinopathies in Clinical Genetic

Béatrice GULBIS M.D., PhD

LHUB-ULB - Department of Clinical Chemistry

ULB - Center of Human Genetics

Co-coordinator ERN EuroBloodNet

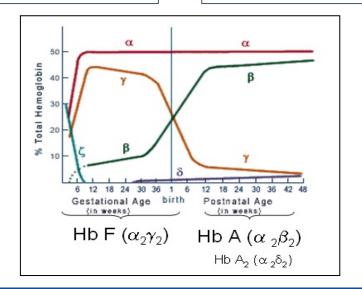
Training objectives

- Mandatory elements for giving a genetic counselling for haemoglobinopathies
- Identifying a couple at risk for a major haemoglobinopathy
- Referring to available recommendations
- Genetic counselling for a haemoglobin S carrier

Haemoglobinopathies

Haemoglobinopathies

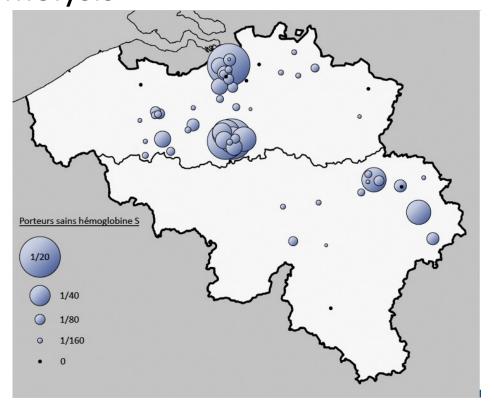
• Thalassaemias α et β


Decrease in globin chain production, α or β

Haemoglobin variants

Abnormal globin chain

 α , β or γ


N.B. Several variants are produced in less amount >> thalassaemia (e.g. Hb E, Hb Constant Spring)

Haemoglobinopathies: screening

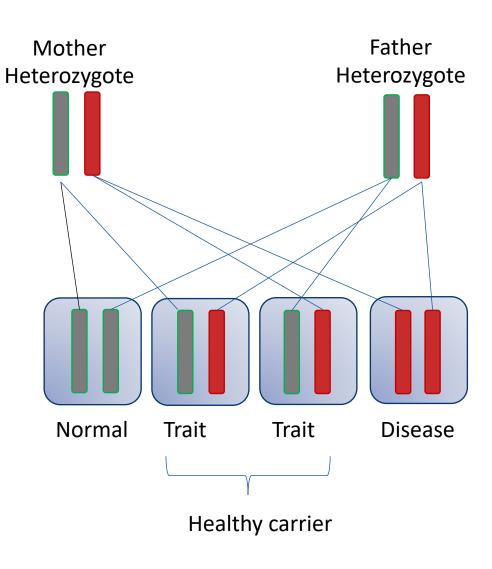
In Belgium = rare disease but not for heterozygotes (healthy carriers)
 Haemolysis

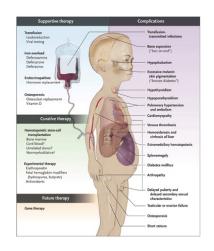
Ketelslegers O. et al. Belg J Hematol 2015;6(4):135-41

See newborn screening that is included in the newborn screening for metabolic disorders since first January 2023 in Fédération Wallonie Bruxelles

No date given for Flanders Region.

Haemoglobinopathies: population at risk


Autosomal recessive disorders



PARENTS

Risk

Thalassaemia transfusion-dependent

Sickle cell anaemia/disorder

Message

 Preconceptionnal or antenatal screening for haemoglobinopathies is useful for the patient, the couple and the descendants

What is mandatory to screen for, who and how?

Risk

European Journal of Human Genetics (2015) 23, 426–437 Thalassaemia

Genotype interaction	Disorder expected	Appropriate to offer PNI
Homozygous		
eta° or severe eta^+ -thalassaemia	Thalassaemia major	Yes
Mild β^+ -thalassaemia	Thalassaemia intermedia	Occasionally ^a
Mild β^{++} -thalassaemia (silent)	Very mild thalassaemia intermedia	No
δeta° -thalassaemia	Thalassaemia intermedia	Occasionally ^a
Hb Lepore	Thalassaemia intermedia to major (variable)	Occasionally ^a
HPFH	Not clinically relevant	No
Hb C	Not clinically relevant	No
Hb D-Punjab	Not clinically relevant	No
Hb E	Not clinically relevant	No
Hb O-Arab	Not clinically relevant	No
Compound heterozygous		
β° /severe β^+ -thalassaemia	Thalassaemia major	Yes
Mild β^+/β° or severe β^+ -thalassaemia	Thalassaemia intermedia to major (variable)	Occasionally ^a
Mild β^{+} +/ β° or severe β^{+} -thalassaemia	Mild thalassaemia intermedia (variable)	Occasionally ^a
$\delta \beta^{\circ}/\beta^{\circ}$ or severe β^+ -thalassaemia	Thalassaemia intermedia to major (variable)	Occasionally ^a
δeta° /mild eta^+ -thalassaemia	Mild thalassaemia intermedia	Occasionally ^a
δeta° /Hb Lepore	Thalassaemia intermedia	Occasionally ^a
Hb Lepore/ eta° or severe eta^+ -thalassaemia	Thalassaemia major	Yes
Hb C/ β° or severe β^+ -thalassaemia	β -thalassaemia trait to intermedia (variable)	Occasionally ^a
Hb C/mild β^+ -thalassaemia	Not clinically relevant	No
Hb D-Punjab/ β° or severe β^+ -thalassaemia	Not clinically relevant	No
Hb E/ eta° or severe eta^+ -thalassaemia	Thalassaemia intermedia to major (variable)	Yes
Hb O-Arab/β°-thalassaemia	Severe thalassaemia intermedia	Yes
ααα/ eta° or severe eta^+ -thalassaemia	Mild thalassaemia intermedia	No
$\alpha\alpha\alpha\alpha\beta^\circ$ and $\alpha\alpha\alpha\alpha\alpha\beta^\circ$ -thalassaemia	Mild to severe thalassaemia intermedia (variable)	Occasionally ^a

Note: The decision to have prenatal diagnosis belongs to the couple, once they have had comprehensive counselling. ^aCouples with genotypes that may lead to offspring with unpredictable phenotypes occasionally select to have prenatal diagnosis or PGD.

Risk European Journal of Human Genetics (2015) 23, 426–437 Sickle cell disease

Genotype interaction	Disorder expected	Appropriate to offer PND
Homozygous		
Hb S	Sickle cell disease	Yes
Compound heterozygous		
Hb S_{β}° or severe β^{+} -thalassaemia	Sickle cell disease	Yes
Hb S _/ mild β+-thalassaemia	Mild sickle cell disease	Occasionallya
Hb S/δβ°-thalassaemia	Mild sickle cell disease	Occasionallya
Hb S/Hb Lepore	Mild sickle cell disease	Occasionallya
Hb S/HbC	Sickle cell disease (variable severity)	Yes
Hb S/Hb D-Punjab	Sickle cell disease	Yes
Hb S/Hb O-Arab	Sickle cell disease	Yes
Hb S/Hbs C-Harlem, S-Southend, S-Antilles	Sickle cell disease	Yes
Hb C/Hb S-Antilles	Sickle cell disease	Yes
Hb S/Hbs Quebec-Chori, C-Ndjamena, O-Tibesi	Sickle cell disease	Yes
Hb S/Hbs I-Toulouse, Shelby, Hope, North Shore	Haemolytic anaemia	No
Hb S/Hb E	Mild to severe sickle cell disease	Occasionallya
Hb S/HPFH	Very mild sickle cell disease	No

Note: The decision to have prenatal diagnosis belongs to the couple, once they have had comprehensive counselling.

^a Couples with genotypes that may lead to offspring with unpredictable phenotypes occasionally select to have prenatal diagnosis or PGD. 18.04.2023

Guidelines Belgian Hematology Society – RBC committee

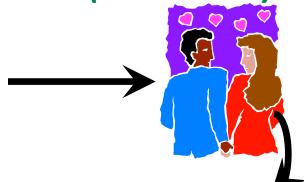
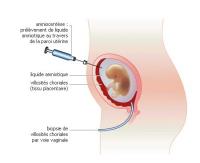


Figure 2. Antenatal screening: (combinations that give rise to the risk of a foetus affected by a severe haemoglobinopathy (adapted from the work of Prof. B. Modell and published by the UK National Screening Committee)

Screening in Belgium pre-conceptionnal or antenatal targeted not universal (all women)



Genetic counselling

Prenatal, preimplentation diagnosis

Be aware of the evolution of the treatments (new drugs, gene therapy)

How and for whom? Recommendations

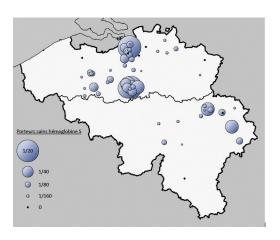
(KCE, BHS, Guide de consultation prénatale 2022 ONE/CRGOLFB)

Screening at distance from blood transfusion				
All women	Complete blood count, ferritin (CRP)			
 If at least one of risk factor MCH< 27 pg in absence of iron deficiency Clinical signs, diagnosis of a major haemoglobiopathy Population at rik Partner (Progenitor) – population at risk* 	Complete blood count, ferritin (CRP) Separation of Hb fractions and, Hb A_2 and Hb F quantification			

(*) Item not present in KCE report 248BS- 2015:

4.4.3. Hémoglobinopathies – actualisation

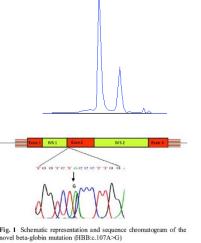
2004	Recommandation	Force de la Recommandation	Niveau de preuve
KCE	 Ne proposez pas à chaque femme enceinte une détection des hémoglobinopathies par électrophorèse. Proposez de pratiquer un dépistage sélectif sur base des facteurs de risque.** 	Faible	NA (CBR)*


^{*} Niveau de preuve provenant du guideline australien de 2014: CBR=Recommandation consensuelle en raison d'éléments de preuve insuffisants pour appuyer la recommandation
** Facteurs de risque = antécédents familiaux d'anémie, de thalassémie ou d'autres variantes anormales de l'hémoglobine; femmes originaires d'autres régions que l'Europe du
Nord; symptômes cliniques suggérant un trouble lié à l'hémoglobine (comme des syndromes de douleurs aiguës récurrentes ou une susceptibilité accrue aux infections); résultats
anormalement faibles de MCV ou de MCH.

Message

- Preconceptionnal or antenatal screening for haemoglobinopathies
 - Simple and routinely available tests can be used for screening
 - To be done in the population at risk if can be defined (third generation ...), otherwise universal (systematic)

Screening tests for haemoglobinopathies?



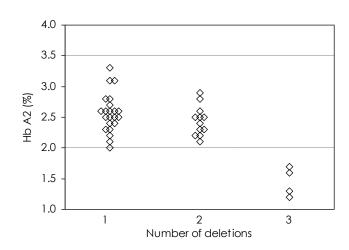
Recommended tests

- Thalassaemias α et β
 - Carriers
- CBC normal or not
 - \Box ± MCH < 27 pg (25 pg)
 - ☐ ± Microcytose
 - ☐ ± Anaemia

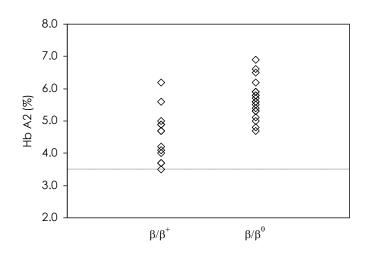
- Separation quantification
 Hb fractions (Hb A₂ et Hb F)
- Molecular biology

- Hb variants
 - Carriers
- > CBC most often normal

Separation –quantification Hb fractions


 Molecular biology(prenatal diagnosis, rare Hb variant)

Separation and quantification Hb fractions:


% Hb A_2 /% Hb F + interpretation by the clinical biologist

α - thalassaemia

Risk ++ of α° - thalassaemia (MCH < 25 pg)

β- thalassaemia

+ risk $\delta \beta$ – thalassaemia with Low Hb A₂ and high Hb F

NHS Sickle Cell and Thalassaemia Screening Programme

Handbook for antenatal laboratories

First screening test must detect

(confirm with a second test, same sample, other technique)

October 2017
Public Health England leads the NHS Screening Programmes

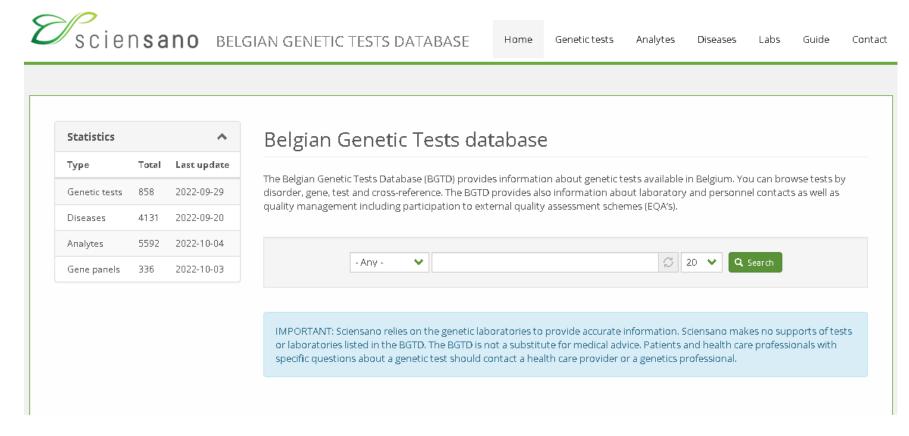
Significant maternal haemoglobinopathies

The following maternal haemoglobinopathies should be detected by antenatal screening and are important for maternal care:

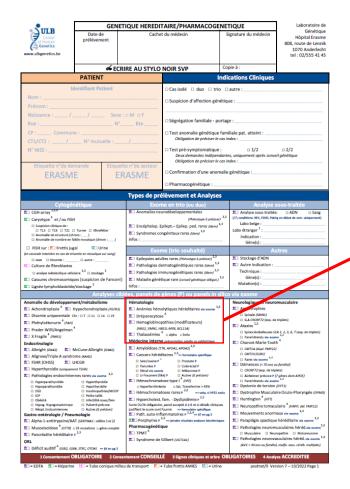
- Hb SS
- Hb SC
- Hb SDPunjab
- Hb SE
- Hb SOArab
- Hb S/Lepore and Hb Lepore/β thalassaemia
- Hb S/β thalassaemia
- Hb S/δβ thalassaemia
- HbH disease (--/-α)
- β thalassaemia major/intermedia
- Hb E/β thalassaemia

Carrier states in biological mother:

- HbS
- HbC
- HbDPunjab
- HbE
- HbO^{Arab}
- Hb Lepore
- ß thalassaemia
- δβ thalassaemia
- α⁰ thalassaemia (--/αα)
- · Hereditary Persistance of Fetal Haemoglobin (HPFH)


Any compound heterozygote state including one or more of the above conditions. Any homozygous state of the above conditions.

Genetics in Belgium



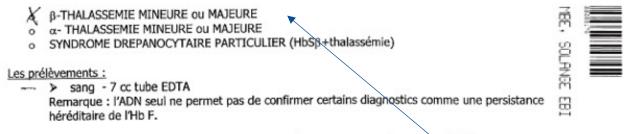
https://gentest.healthdata.be/

Request for a test

Hématologie

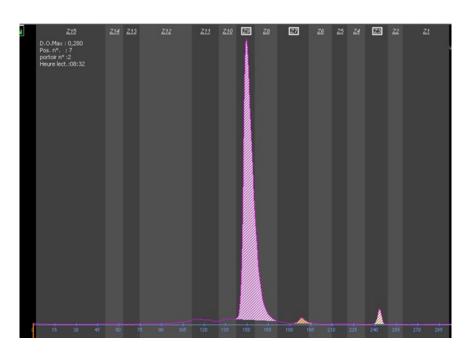
- E Anémies hémolytiques héréditaires via exome
- E□ Drépanocytose 4
- **E**□ Hemoglobinopathies (modificateurs)

(HBG2_XMN1, HBS1L-MYB, BCL11A)


E□ Thalassémies ⁴ □ alpha □ beta

NEED to have the clinical phenotype and laboratory findings!

For molecular sequencing we need information



Les informations à joindre afin de permettre une interprétation correcte des analyses à réaliser ainsi que des résultats :

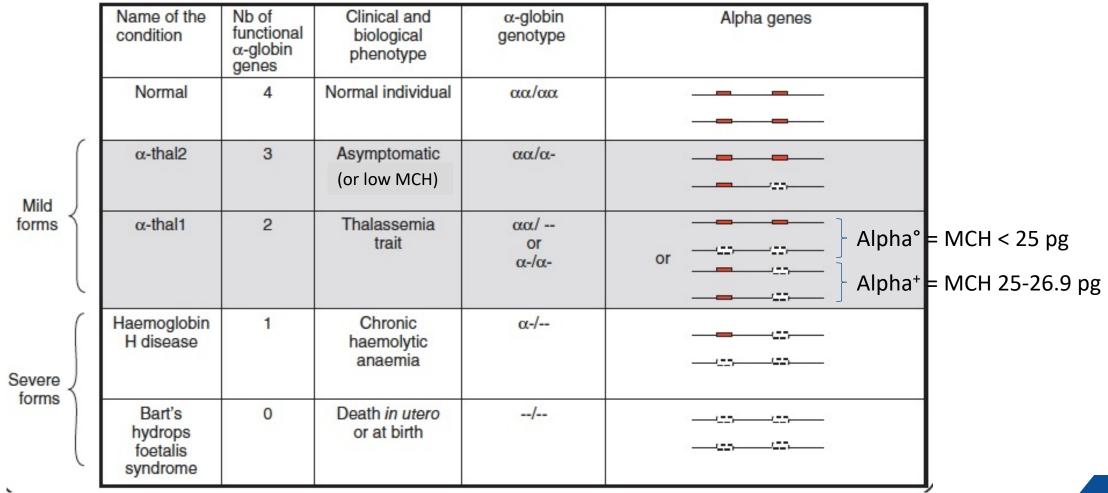
Transfusion	Oui // Non/	Date de prélèvement		
Halistusion	Date :			
Grossesse	Oui / (Ngri	Hémoglobine g/dL	10	
Origine géographique	ARIELOS	GR 10 ⁶ /mm ³	4	
Histoire familiale ?	Oui / Non	MCV fL	20078	
Anémie hémolytique ?	Oui / Non	MCHC g/dL	777 33	
Spiénomégalie ?	Oui / Non	MCH pg	25	, 55
Ictère néonatal?	Oui / (Non)	RDW/HDW	14,19	
		Ferritine ng/mL	16	
		Saturation transferrine %	7.7	
		CRP mg/dL	2.2	
		HbA ₂ %*	27	「 Hb A₂ 2.6%
		Hb F %	60,5	-
		Hb(s) anormale(s) ?	Oui / Non	Hb F < 0.5%
		Laquelle ? Ex HbAS, Hb SS, Hb SC,		

Case 1: a gynaecologist prescribes a Hb electrophoresis for a patient, 24 y.o. 6 weeks pregnancy, Asian origin

Do you have enough information for a genetic counselling?

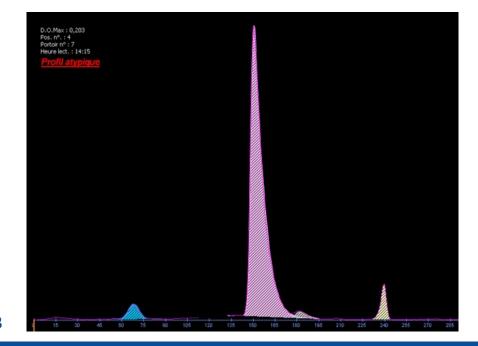
CZE kit haemoglobin: HbA₂ 2.2% (2.1% - 3.2%)

Hb F 0.6 % (< 1.5%)


Hb A 97 %

Absence of a Hb variant

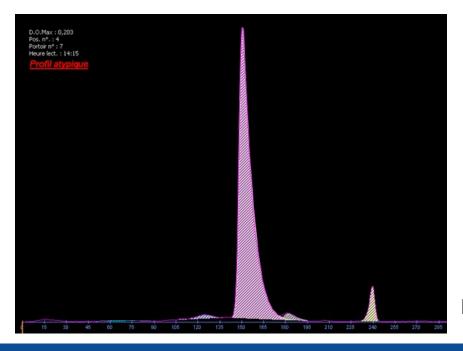
Screening for α-thalassaemia


Molecular genetics of alpha-thalassaemias P. Aguilar Martinez and B. Gulbis DOI: 10.1002/9780470015902.a0022439.pub2

Case 2: a general practitioner proposed an antenatal screening (9 w. pregnancy)

- Request/Results
 - Complete blood count MCH 24 pg; Hb 10.1 g/dL
 - Ferritin 105 ng/mL >> Ok
 - Separation Hb fractions

What do you propose to complete the assessment?


Risk of β -thalassaemia trait >> partner to be tested; final diagnosis= molecular biology

 $HbA_2 5.1 \% (2.1 - 3.2\%)$

Case 3: a general practitioner proposed an antenatal screening (9 w. pregnancy)

- Request/Results
 - Complete blood count MCH 28 pg; Hb 12.1 g/dL
 - Ferritin 105 ng/mL >> Ok
 - Separation Hb fractions

Causes minor increase in Hb A_2 :

- β -thalassaemia trait (silent)
- Alpha globin gene triplication
- Technical interference (+ Hb variant)
- Mutation KLF1
- Hyperthyroidism
- Megaloblastic anemia
- Antiviral treatment (HIV)
- Pseudoxanthoma

HbA₂ 3.3 %

Message

• Pre-conception or prenatal counselling for haemoglobinopathies requires **complete information**: clinical and biological data (complete blood count, separation and quantification of Hb fractions)

Hb S carrier: counselling?

AS – clinical data

- Benign status, healthy individuals
- « Laboratory diagnosis » screening family study

AS – Recommendations?

Hematology 2018 ASH Education program

Blood 2018; 132: 2331-2338

- Genetic counselling (procreation)
- Confirmed complications
 - Rare exercise-related deaths, see general population
 - Systematic screening not necessary
 - Apply universal precautions related to strenuous exercise
 - Kidney
 - Progression to renal failure (15-35% > 45 y.; risk x 2; risk decreases if alpha-thal., risk increases if diabetes)
 - Renal medullary carcinoma (rare but imaging if haematuria)
 - Screening if child, young adult with micro macro haematuria or renal imaging
 - Refer to a urologist if adult AS with unexplained haematuria
 - Splenic infarction
 - Reduced deaths from malaria

AS - Recommendations

- When there is significant hypoxia (high altitude, etc.), sickling of erythrocytes may occur
 - Hydration and mobilization if traveling by long-haul plane (valid for the general population...);
 - If surgery, notify the anaesthesiologist of the AS status
 - Hydration ++ during intensive physical exercises (valid for the general population...)

AS - Recommendations

- Specific situation : pregnancy
 - Probable associations: thromboembolic complications, spontaneous abortions? Pre-eclampsia? Asymptomatic bacteriuria?
- Special advice for AS complaining of pain
 - Consider the pain
 - Look for a cause unrelated to HbS
 - If necessary, refer the patient to a pain consultation

Message

- Mainly benign condition
- Some recommendations in situations of severe hypoxia

"I hear, I know.
I see, I remember.
I do, I understand."

(Confucius, 551BC - 479)

THE END ...

A votre disposition

<u>Beatrice.Gulbis@lhub-ulb.be</u> <u>AnneSophie.Adam@lhub-ulb.be</u> <u>Sara.Benyaich@lhub-ulb.be</u>

Laboratoire Hospitalier Unviversitaire de Bruxelles Ihub-ulb.be

Centre de génétique humaine de l'ULB ulbgenetics.be
Demandegenetique@hubruxelles.be

Network
 Hematological
 Diseases (ERN EuroBloodNet)

www.eurobloodnet.eu

