

Hereditary Red Cell Membrane Disorders

Anne-Sophie Adam LHUB-ULB

Manama Course in Clinical Genetics – 18/04/2023

INTRODUCTION

Anaemia

Red Cell Membrane

Vertical interactions

Horizontal interactions

Red Cell Membrane

Hereditary Red Cell Membrane Disorders

Membrane Transport Disorders

Overhydrated Hereditary Stomatocytosis (OHSt) Dehydrated Hereditary Stomatocytosis (DHSt)* Familial Pseudohyperkalaemia (FP) Cryohydrocytosis (CHC)

Southeast Asian Ovalocytosis (SAO)

HEREDITARY SPHEROCYTOSIS

- First described in **1871** as **microcythemia** in a case history by 2 Belgian physicians
- Most common inherited haemolytic anemia:
 - Prevalence: 1/2.000 1/5.000 in Nothern Europe
 - Probably higher (undiagnosed mild cases)

• Highly heterogeneous group of disorders:

- > Clinical severity: fully compensated haemolysis to transfusion-dependant anaemia
- **Protein defect:** α and β -spectrins, ankyrin, band 3 and protein 4.2
- > Mode of inheritance: 75% dominant ; 25% recessive/de novo
- Age of diagnosis

- Clinical presentation:
 - > Neonatal period/Infancy:
 - Neonatal jaundice
 - Hb level:
 - Normal at birth
 - Rapid fall within the 1st month after birth
 - Anaemia: mostly improves during the 1st year of life

Childhood/Adulthood:

- Persistant jaundice, anaemia, splenomegaly, gallstones
- Haemolysis: can be compensated in adults
- **Positive familial history** in 75% of cases

	Trait	Mild	Moderate	Severe
Haemoglobin (g/dL)	Normal	11 – 15	8 – 12	6 – 8
Reticulocytes count (%)	Normal (< 3%)	3 – 6	> 6	> 10
Bilirubin (μmol/L)	< 17	17 – 34	> 34	> 51
Splenectomy	nectomy Not required Us du		Necessary during school age before puberty	Necessary – delay until 6 years if possible

HEREDITARY ELLIPTOCYTOSIS

- Heterogeneous group of inherited RBC membrane disorders characterised by elliptical-shaped RBCs on the peripheral blood smear
- Subtypes of HE:
 - Common Hereditary elliptocytosis (HE)
 - Hereditary PyroPoikilocytosis (HPP)
 - Southeast Asian Ovalocytosis (SAO)
 - Spherocytic Elliptocytosis (SE)

⇒ Major clinical differences in the **RBC morphology** and **severity of haemolysis**

- First reported in **1904** by Dresbach
- Prevalence: Unknown
 - Estimated to 1/1.000 1/4.000 worldwide
 - 1/5.000 among Caucasians
 - Higher in countries in the malaria-endemic regions : 1/100 in West Africa (Probable protection)
 - Probably higher (undiagnosed asymptomatic patients)
- Highly heterogeneous group of disorders:
 - > Clinical severity: asymptomatic to severe haemolytic anaemia
 - **Protein defect:** α and β -spectrins, protein 4.1 (and rarely glycophorin C) (Band 3 in SAO)
 - > Mode of inheritance: autosomal dominant (recessive for HPP)
 - Age of diagnosis

Vertical interactions

• Physiopathology:

Normal RBCs: repeatedly and momentarily assume an elliptical shape to negotiate through capillaries but then regain their biconcave discoid shape after they pass through the microcirculation

RBCs in HE:

- Lack the elastic recoil necessary for returning to the discoid shape and eventually assume the fixed characteristic morphology of elliptocytes
- Elliptocytes are not as deformable as normal RBCs and are eventually trapped and removed by the spleen
- In severe case (HPP), membrane is lost, leading to fragmentation, haemolysis and production of microcytic or spherotic RBCs

	Common HE	HPP SAO		Spherocytic Elliptocytosis
Haemolytic Anemia	None-mild	Severe None (Possible in neonates)		Mild to moderate
Spenomegaly	None	Present	None	Present
Other clinical manifestations	None	Intermittent jaundice Aplastic crises	None	Intermittent jaundice Aplastic crises
Peripheral blood smear	15-90% elliptocytes	Poikilocytosis; RBC budding with fragments; elliptocytes; microspherocytes Poikilocytosis; RBC some having a transve bar dividing cell		Rounded elliptocytes; spherocytes
Inheritance	Dominant	Recessive	Dominant	Dominant

HEREDITARY STOMATOCYTOSIS

Hereditary Stomatocytosis

A new variant of hereditary hemolytic anemia with stomatocytosis and erythrocyte cation abnormality

D R Miller, F R Rickles, M A Lichtman, P L La Celle, J Bates, R I Weed

- Group of haemolytic conditions in which the primary lesion is a « leak » to the monovalent cations Na⁺ and K⁺, resulting in an altered hydratation status shown by a significant change in MCV
- Subtypes of HSt:
 - Overhydrated HSt (OHSt)
 - Dehydrated HSt (DHSt)
 - Cryohydrocytosis (CHC)
 - Familial pseudohyperkalaemia (FP)

• Heterogeneous group of disorders:

- > Clinical severity: highly variable clinical presentation; only FP is an asymptomatic trait
- > Protein defect: PIEZO1 channel, Gardos channel (KCNN4), RhAG, Band 3 and ABCB6
- Mode of inheritance: dominant
- Age of diagnosis

Hereditary Stomatocytosis

	Overhydrated HSt (OHSt)	Dehydrated HSt (DHSt)	Cryohydrocytosis (CHC)	Familial Pseudo- hyperkalaemia (FP)
Prevalence	1/1.000.000	1/10.000	Rare	Rare
Morphology	Macrocytosis, stomatocytosis	Stomatocytes, Target cells	Stomatocytes	Normal
Hb (g/dL)	8-10	12-15	10-12	Normal range
MCV (fL)	120-140	120-150	100-120	Normal or high
MCHC (g/dL)	24-28	35-37	Normal	Normal
Reticulocytosis	10-15%	About 10%	About 8%	Normal
Haptoglobin	Undetectable	Undetectable	Undetectable	Present
Intracellular cations	About 40x normal Na ⁺ /K ⁺ transport rate	Abnormal, more subtle than OHSt	K ⁺ leak at low temperature and at 4°C	High plasma K⁺ when blood specimen left at RT for several hours

Adapted from King et al., 2015

Hereditary Stomatocytosis

• Physiopathology:

- > Precise mechanisms leading to RBCs haemolysis largely unknown
- > Mechanism of stomatocyte formation involves changes in cell volume caused by changes in intracellular ion content
 - When leakage of K⁺ out of the cell exceeds the rate at which it's pumped back in → Low intracellular K⁺ content
 → Dehydratation
 - If the permeability of the membrane to Na⁺ is abnormally high and the Na⁺/K⁺-ATPase is unable to fully compensate → Na⁺ cell gain → Overhydratation

DIAGNOSIS

PHENOTYPE

LHUB-ULB Laboratory approach

- Family and Clinical Histories
- Laboratory investigations
 - First tier screening tests
 - RBC morphology
 - Biological parameters of haemolysis
 - (New RBC and reticulocyte parameters)

Second tier screening tests

- Eosine-5-maleimide (EMA) binding test
- Cryohaemolysis

Diagnostic tests

- Ektacytometry
- SDS-PAGE

Ś	Anderlecht Route de Lennik, 808 Lennikse Baan 1070 Bruxelles-Brussel T. +32 (0)2 555.66.75
LHUB-ULB	

Contacts :

ort Schaerbeek rue du Foyer Sc Schaarbeeks el 1030 Brune T. +32 (0)

Rue Haute, 322 Hoogstraat 000 Bruxelles-Brus T. +32 (0)2 435,20.0 Schaerbeek - Schaarbeek e du Foyer Schaerbeekois, 36 Schaarbeeksehaardstraat 1030 Bruxelles-Brussel T. +32 (0)2 477,93.17

P-RD-CHCH-051 - Version 1

CONTRACTOR AND A CONTRACT AND A CONT

Shipment of samples : LHUB-ULB Site Anderlecht LABORATOIRE DE CHIMIE MEDICALE Route de Lennik, 808 1070 BRUXELLES

Laboratory : +32(0) 435 22 33 Prof. B. Gulbis : +32(0) 555 34 27 or +32(0) 435 20 10 Website: <u>Intps://www.erasme.uib.ac.be/fr/professionnel-de-la-</u> <u>sante/vous-etes-un-medecin-generaliste-ou-specialiste/compendium-</u> <u>des-analyses</u>

Screening / diagnostics of heredity spherocytosis (HS) and other RBC membrane

pathologies 2 tubes EDTA 5 ml (*new-born: 2 tubes EDTA 2 ml*) Cryohaemolysis test (code INAMI: 553195/553206) EMA binding test (code INAMI: 545112/545123)

Deformability assay by ektacytometry Gel electrophoresis membrane protein analysis:

Get electrophoresis membrane pro
 If possible, joint parents' samples

Send the samples within 24 hours (avoid Friday) - do not centrifuge.

NECESSARY INFORMATION

Höpital Erasme

Transfusion? Y / N (date of the last one:/) Treatment:

Commentary or parental link:

Cryohaemolysis test

- Test based on the increased susceptibility to cold (0°c) in hypertonic conditions of the RBCs of <u>HS patients</u>
 - > Measure the % of cryohaemolysis compared to a normal control
 - Cut-off value: positive if > 10%
 - > Performance:
 - Sensitivity: 100%
 - Specificity: 86%

EMA Binding Test

- Flow cytometric test that measures the mean fluorescence intensity (MFI) of EMA tagged RBCs
 - > EMA dye binds mostly to **Band 3 protein**
 - > **Results:** expressed in % decrease in MFI of patients compared to the mean of normal controls
 - Cut-off values:
 - < 11%: negative</p>
 - 11-19%: grey zone
 - > 19%: positive
 - > Performances:
 - Sensitivity: 89 99,1%
 - Specificity: 92,7 99,1%
 - > Advantages: Simple, Cost effective & Highly reproductible

Ektacytometry

• Ektacytometer:

- Fully automated measurement and calculation of various phenomena of RBCs by analysis of their rheological behavior
- > Accurate detection of :
 - RBC deformability
 - Pre-hemolytic stability
 - RBC aggregation
- Osmoscan: analysis of the RBC deformability in changing osmotic environment with applied constant shear stress

Méndez-Mora L et al, 2021

Ektacytometry

Hereditary Spherocytosis

Dehydrated Hereditary Stomatocysosis

Hereditary Pyropoikilocytosis

Southeast Asian Ovalocytosis

6

44.

Hereditary Elliptocytosis

NON SEVERE ELLIPTOCYTOSIS

31

SDS-PAGE

- **SDS-PAGE** = Sodium dodecyl sulphate polyacrylamide gel electrophoresis
 - > Determines the **defective membrane protein** and the **extent of membrane deficiency**
 - > Lack of sensitivity to some of the mild HS
- Recommended if:
 - Clinical phenotype more severe than predicted from RBC morphology
 - > RBC morphology is more severe than predicted from parental blood film
 - > Equivocal or borderline results of the screening tests
 - > Diagnosis is **not clear** prior to splenectomy
- Can not detect GLUT1, RhA, Gardos G and PIZEO1 related disorders

LHUB-ULB

- 2019-Present: National Reference Center for the analysis of
 - RBC deformability by Ektacytometry
 - RBC membrane proteins by SDS-PAGE

LHUB-ULB Flow Chart

GENOTYPE

• Genetic standpoint: 15 different types of anaemias due to RBC membrane defects included in the Online Mendelian Inheritance in Man (OMIM) compendium of human genes and genetic phenotypes

Disease symbol	Phenotype	Phenotype MIM number	Gene location	Protein name ^s I	nheritance
HS1	Hereditary spherocytosis type 1	182900	ANK1 8p11.21	Ankyrin-1	AD
HS2	Hereditary spherocytosis type 2	616649	SPTB 14q23.3	Spectrin β chain, erythrocytic	AD
HS3	Hereditary spherocytosis type 3	270970	SPTA1 1q23.1	Spectrin α chain, erythrocytic 1	AR
HS4	Hereditary spherocytosis type 4	612653	SLC4A1 17q21.31	Band 3 anion transport protein	AD
HS5	Hereditary spherocytosis type 5	612690	EPB42 15q15.2	Erythrocyte membrane protein band 4.2	AR
HE1	Hereditary elliptocytosis 1	611804	EPB41 1p35.3	Protein band 4.1	AD
HE2	Hereditary elliptocytosis 2	130600	SPTA1 1q23.1	Spectrin α chain, erythrocytic 1	AD
HE3	Hereditary elliptocytosis 3	-	SPTB 14q23.3	Spectrin β chain, erythrocytic	AD
HPP	Hereditary Pyropoikilocytosis	266140	SPTA1 1q23.1	Spectrin α chain, erythrocytic 1	AR
SAO	Ovalocytosis Southeast Asian type	166900	SLC4A1 17q21.31	Band 3 anion transport protein	AD
OHS	Overhydrated hereditary stomatocytosis	185000	RHAG 6p12.3	Ammonium transporter Rh type A	AD
DHS1	Dehydrated hereditary stomatocytosis with or without pseudohyperkalemia and/or perinatal edema	194380 a	PIEZO1 16q24.3	Piezo-type mechanosensitive ion channe component 1	el AD
DHS2	Dehydrated hereditary stomatocytosis 2	616689	KCNN4 19q13.31	Intermediate conductance calcium-activated potassium channel pre	AD otein 4
FP	Familial pseudohyperkalemia	609153	ABCB6 <i>2q35-q36</i>	ATP-binding cassette sub-family B member 6	AD
CHC	Cryohydrocytosis	185020	SLC4A1 17q21.31	Band 3 anion transport protein	AD

Table 1. Classification of erythrocyte membrane disorders by OMIM database.

Protein name reported in Uniprot database. AD: Autosomal dominant; AR: Autosomal recessive; ATP: adenosine triphosphate; Rh: Rhesus; OMIM: Online Mendelian Inheritance in Man; MIM: Mendelian Inheritance in Man.

Molecular analysis: When?

Clinical Phenotype / Laboratory testing

- Transfusion-dependent patients
- Recessive or sporadic transmission
- Complex forms of membrane pathology or mixed forms
- Discrepancy between clinical phenotype and diagnosis
- Cases of unexplained fetal anaemia or hydrops fetalis
- Unsolved cases

Next Generation Sequencing (NGS)

Molecular analysis: Why?

Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias

Roberta Russo, Immacolata Andolfo, Francesco Manna, Antonella Gambale, Roberta Marra, Barbara Eleni Rosato, Paola Caforio, Valeria Pinto, Piero Pignataro, Kottayam Radhakrishnan, Sule Unal, Giovanna Tomaiuolo, Gian Luca Forni, Achille Iolascon

Am J Hematol. 2018 May;93(5):672-682.

A novel 33-Gene targeted resequencing panel provides accurate, clinical-grade diagnosis and improves patient management for rare inherited anaemias

Noémi B. A. Roy, Edward A. Wilson, Shirley Henderson, Katherine Wray, Christian Babbs, Steven Okoli, Wale Atoyebi, Avery Mixon, Mary R. Cahill, Peter Carey, Jonathan Cullis, Julie Curtin, Helene Dreau, David J. P. Ferguson, Brenda Gibson, Georgina Hall, Joanne Mason, Mary Morgan, Melanie Proven, Amrana Qureshi, Joaquin Sanchez Garcia, Nongnuch Sirachainan, Juliana Teo, Ulf Tedgård, Doug Higgs, David Roberts, Irene Roberts 🕵, Anna Schuh 🗙 ... See fewer authors 🔿

Br J Haematol. 2016 Oct;175(2):318-330

Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing

R. Del Orbe Barreto, B. Arrizabalaga, A. B. De la Hoz, Á. García-Orad, M. I. Tejada, J. C. Garcia-Ruiz, T. Fidalgo, C. Bento, L. Manco, M. L. Ribeiro

Int J Lab Hematol. 2016 Dec;38(6):629-638.

Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias

Archana M. Agarwal, Roberto H. Nussenzveig, Noel S. Reading, Jay L. Patel, Nikhil Sangle, Mohamed E. Salama, Josef T. Prchal, Sherrie L Perkins, Hassan M. Yaish, Robert D. Christensen

Br J Haematol. 2016 Sep;174(5):806-14.

> Improves precise **diagnosis**, **management** of patients and **counselling** of the patient and their family.

Molecular analysis: Gene panel

LARCHARDS INVESTIGATE DE REMAILLE LHUBB-ULLB LUVESCHE LARCHARDS INVESTIGATE DE REMAILLE

• « In house » panel of 4427 genes (mendeliome)

- a. Ataxia (524 genes)
- b. Congenital malformation syndromes (853 genes)
- c. Early onset epileptic encephalopathy (836 genes)

- d. Hereditary Hemolytic Anaemias due to unknown or doubtful origin (56 genes)
- e. Hereditary spastic paraplegia (160 genes)
- f. Neurodevelopmental disorders (1376 genes)
- g. Neuromuscular disorders (535 genes)
- h. Dermatogenetic panel, severe, rare and hereditary genodermatoses (374 genes)

LITTERATURE & GUIDELINES

Must-read

- Andolfo, I., R. Russo, A. Gambale and A. Iolascon (2016). "New insights on hereditary erythrocyte membrane defects." Haematologica 101(11): 1284-1294.
- Andolfo, I., R. Russo, A. Gambale and A. Iolascon (2018). "Hereditary stomatocytosis: An underdiagnosed condition." Am J Hematol 93(1): 107-121.
- Bolton-Maggs, P. H., J. C. Langer, A. Iolascon, P. Tittensor and M. J. King (2012). "Guidelines for the diagnosis and management of hereditary spherocytosis--2011 update." Br J Haematol 156(1): 37-49.
- Da Costa, L., J. Galimand, O. Fenneteau and N. Mohandas (2013). "Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders." Blood Rev 27(4): 167-178.
- Iolascon, A., I. Andolfo and R. Russo (2019). "Advances in understanding the pathogenesis of red cell membrane disorders." Br J Haematol 187(1): 13-24.
- Kalfa, T. A. (2021). "Diagnosis and clinical management of red cell membrane disorders." Hematology Am Soc Hematol Educ Program 2021(1): 331-340.
- King, M. J., L. Garçon, J. D. Hoyer, A. Iolascon, V. Picard, G. Stewart, P. Bianchi, S. H. Lee and A.
- Zanella (2015). "ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders." Int J Lab Hematol 37(3): 304-325.
- King, M. J. and A. Zanella (2013). "Hereditary red cell membrane disorders and laboratory diagnostic testing." Int J Lab Hematol 35(3): 237-243.
- Narla, J. and N. Mohandas (2017). "Red cell membrane disorders." Int J Lab Hematol 39 Suppl 1: 47-52.
- Perrotta, S., P. G. Gallagher and N. Mohandas (2008). "Hereditary spherocytosis." Lancet 372(9647): 1411-1426.
- Risinger, M. and T. A. Kalfa (2020). "Red cell membrane disorders: structure meets function." Blood 136(11): 1250-1261.
- PNDS Sphérocytose héréditaire et autres anémies hémolytiques par anomalies de la membrane érythrocytaire (2021) Filière de santé maladies rares MCGRE

Thank you !

